Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jul 1;317(Pt 1):65–76. doi: 10.1042/bj3170065

Protein phosphatase and kinase activities possibly involved in exocytosis regulation in Paramecium tetraurelia.

R Kissmehl 1, T Treptau 1, H W Hofer 1, H Plattner 1
PMCID: PMC1217487  PMID: 8694788

Abstract

In Paramecium tetraurelia cells synchronous exocytosis induced by aminoethyldextran (AED) is accompanied by an equally rapid dephosphorylation of a 63 kDa phosphoprotein (PP63) within 80 ms. In vivo, rephosphorylation occurs within a few seconds after AED triggering. In homogenates (P)P63 can be solubilized in all three phosphorylation states (phosphorylated, dephosphorylated and rephosphorylated) and thus tested in vitro. By using chelators of different divalent cations, de- and rephosphorylation of PP63 and P63 respectively can be achieved by an endogenous protein phosphatase/kinase system. Dephosphorylation occurs in the presence of EDTA, whereas in the presence of EGTA this was concealed by phosphorylation by endogenous kinase(s), thus indicating that phosphorylation of P63 is calcium-independent. Results obtained with protein phosphatase inhibitors (okadaic acid, calyculin A) allowed us to exclude a protein serine/threonine phosphatase of type I (with selective sensitivity in Paramecium). Protein phosphatase 2C is also less likely to be a candidate because of its requirement for high Mg2+ concentrations. According to previous evidence a protein serine/threonine phosphatase of type 2B (calcineurin; CaN) is possibly involved. We have now found that bovine brain CaN dephosphorylates PP63 in vitro. Taking into account the specific requirements of this phosphatase in vitro, with p-nitrophenyl phosphate as a substrate, we have isolated a cytosolic phosphatase of similar characteristics by combined preparative gel electrophoresis and affinity-column chromatography. In Paramecium this phosphatase also dephosphorylates PP63 in vitro (after 32P labelling in vivo). Using various combinations of ion exchange, affinity and hydrophobic interaction chromatography we have also isolated three different protein kinases from the soluble fraction, i.e. a cAMP-dependent protein kinase (PKA), a cGMP-dependent protein kinase (PKG) and a casein kinase. Among the kinases tested, PKA cannot phosphorylate P63, whereas either PKG or the casein kinase phosphorylate P63 in vitro. On the basis of these findings we propose that a protein phosphatase/kinase system is involved in the regulation of exocytosis in P. tetraurelia cells.

Full Text

The Full Text of this article is available as a PDF (510.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ammälä C., Eliasson L., Bokvist K., Berggren P. O., Honkanen R. E., Sjöholm A., Rorsman P. Activation of protein kinases and inhibition of protein phosphatases play a central role in the regulation of exocytosis in mouse pancreatic beta cells. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4343–4347. doi: 10.1073/pnas.91.10.4343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Burgoyne R. D., Morgan A. Regulated exocytosis. Biochem J. 1993 Jul 15;293(Pt 2):305–316. doi: 10.1042/bj2930305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burnham D. B., Williams J. A. Effects of carbachol, cholecystokinin, and insulin on protein phosphorylation in isolated pancreatic acini. J Biol Chem. 1982 Sep 10;257(17):10523–10528. [PubMed] [Google Scholar]
  5. Chakravarty N. The roles of calmodulin and protein kinase C in histamine secretion from mast cells. Agents Actions. 1992 Jul;36(3-4):183–191. [PubMed] [Google Scholar]
  6. Chavira R., Jr, Burnett T. J., Hageman J. H. Assaying proteinases with azocoll. Anal Biochem. 1984 Feb;136(2):446–450. doi: 10.1016/0003-2697(84)90242-2. [DOI] [PubMed] [Google Scholar]
  7. Cohen P., Holmes C. F., Tsukitani Y. Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci. 1990 Mar;15(3):98–102. doi: 10.1016/0968-0004(90)90192-e. [DOI] [PubMed] [Google Scholar]
  8. Cohen P. Protein phosphorylation and hormone action. Proc R Soc Lond B Biol Sci. 1988 Jul 22;234(1275):115–144. doi: 10.1098/rspb.1988.0040. [DOI] [PubMed] [Google Scholar]
  9. Cohen P. Signal integration at the level of protein kinases, protein phosphatases and their substrates. Trends Biochem Sci. 1992 Oct;17(10):408–413. doi: 10.1016/0968-0004(92)90010-7. [DOI] [PubMed] [Google Scholar]
  10. Côté A., Doucet J. P., Trifaró J. M. Phosphorylation and dephosphorylation of chromaffin cell proteins in response to stimulation. Neuroscience. 1986 Oct;19(2):629–645. doi: 10.1016/0306-4522(86)90286-1. [DOI] [PubMed] [Google Scholar]
  11. Dutz J. P., Fruman D. A., Burakoff S. J., Bierer B. E. A role for calcineurin in degranulation of murine cytotoxic T lymphocytes. J Immunol. 1993 Apr 1;150(7):2591–2598. [PubMed] [Google Scholar]
  12. Finkbeiner W. E., Widdicombe J. H., Hu L., Basbaum C. B. Bovine tracheal serous cell secretion: role of cAMP and cAMP-dependent protein kinase. Am J Physiol. 1992 May;262(5 Pt 1):L574–L581. doi: 10.1152/ajplung.1992.262.5.L574. [DOI] [PubMed] [Google Scholar]
  13. Friderich G., Klumpp S., Russell C. B., Hinrichsen R. D., Kellner R., Schultz J. E. Purification, characterization and structure of protein phosphatase 1 from the cilia of Paramecium tetraurelia. Eur J Biochem. 1992 Oct 1;209(1):43–49. doi: 10.1111/j.1432-1033.1992.tb17259.x. [DOI] [PubMed] [Google Scholar]
  14. Gilligan D. M., Satir B. H. Protein phosphorylation/dephosphorylation and stimulus-secretion coupling in wild type and mutant Paramecium. J Biol Chem. 1982 Dec 10;257(23):13903–13906. [PubMed] [Google Scholar]
  15. Glas-Albrecht R., Plattner H. High yield isolation procedure for intact secretory organelles (trichocysts) from different Paramecium tetraurelia strains. Eur J Cell Biol. 1990 Oct;53(1):164–172. [PubMed] [Google Scholar]
  16. Goldenring J. R., Asher V. A., Barreuther M. F., Lewis J. J., Lohmann S. M., Walter U., Modlin I. M. Dephosphorylation of cAMP-dependent protein kinase regulatory subunit in stimulated parietal cells. Am J Physiol. 1992 Apr;262(4 Pt 1):G763–G773. doi: 10.1152/ajpgi.1992.262.4.G763. [DOI] [PubMed] [Google Scholar]
  17. Greengard P., Valtorta F., Czernik A. J., Benfenati F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science. 1993 Feb 5;259(5096):780–785. doi: 10.1126/science.8430330. [DOI] [PubMed] [Google Scholar]
  18. Groblewski G. E., Wagner A. C., Williams J. A. Cyclosporin A inhibits Ca2+/calmodulin-dependent protein phosphatase and secretion in pancreatic acinar cells. J Biol Chem. 1994 May 27;269(21):15111–15117. [PubMed] [Google Scholar]
  19. Gundersen R. E., Nelson D. L. A novel Ca2+-dependent protein kinase from Paramecium tetraurelia. J Biol Chem. 1987 Apr 5;262(10):4602–4609. [PubMed] [Google Scholar]
  20. Gómez-Puertas P., Martínez-Serrano A., Blanco P., Satrústegui J., Bogónez E. Conditions restricting depolarization-dependent calcium influx in synaptosomes reveal a graded response of P96 dephosphorylation and a transient dephosphorylation of P65. J Neurochem. 1991 Jun;56(6):2039–2047. doi: 10.1111/j.1471-4159.1991.tb03464.x. [DOI] [PubMed] [Google Scholar]
  21. Hinrichsen R. D., Fraga D., Russell C. The regulation of calcium in Paramecium. Adv Second Messenger Phosphoprotein Res. 1995;30:311–338. doi: 10.1016/s1040-7952(05)80013-8. [DOI] [PubMed] [Google Scholar]
  22. Hochstrasser M., Nelson D. L. Cyclic AMP-dependent protein kinase in Paramecium tetraurelia. Its purification and the production of monoclonal antibodies against both subunits. J Biol Chem. 1989 Aug 25;264(24):14510–14518. [PubMed] [Google Scholar]
  23. Höhne-Zell B., Knoll G., Riedel-Gras U., Hofer W., Plattner H. A cortical phosphoprotein ('PP63') sensitive to exocytosis triggering in Paramecium cells. Immunolocalization and quenched-flow correlation of time course of dephosphorylation with membrane fusion. Biochem J. 1992 Sep 15;286(Pt 3):843–849. doi: 10.1042/bj2860843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ishiguro H., Hayakawa T., Kondo T., Shibata T., Kitagawa M., Sakai Y., Sobajima H., Nakae Y., Tanikawa M., Hidaka H. Effects of calmodulin inhibitors on amylase secretion from rat pancreatic acini. Digestion. 1992;53(3-4):162–170. [PubMed] [Google Scholar]
  25. Kerboeuf D., Le Berre A., Dedieu J. C., Cohen J. Calmodulin is essential for assembling links necessary for exocytotic membrane fusion in Paramecium. EMBO J. 1993 Sep;12(9):3385–3390. doi: 10.1002/j.1460-2075.1993.tb06012.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Klumpp S., Cohen P., Schultz J. E. Chromatographic separation of four Ser/Thr-protein phosphatases from solubilized ciliary membranes of Paramecium tetraurelia by heparin-sepharose. J Chromatogr. 1990 Nov 23;521(2):179–186. doi: 10.1016/0021-9673(90)85042-t. [DOI] [PubMed] [Google Scholar]
  27. Klumpp S., Cohen P., Schultz J. E. Okadaic acid, an inhibitor of protein phosphatase 1 in Paramecium, causes sustained Ca2(+)-dependent backward swimming in response to depolarizing stimuli. EMBO J. 1990 Mar;9(3):685–689. doi: 10.1002/j.1460-2075.1990.tb08160.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Klumpp S., Hanke C., Donella-Deana A., Beyer A., Kellner R., Pinna L. A., Schultz J. E. A membrane-bound protein phosphatase type 2C from Paramecium tetraurelia. Purification, characterization, and cloning. J Biol Chem. 1994 Dec 30;269(52):32774–32780. [PubMed] [Google Scholar]
  29. Klumpp S., Steiner A. L., Schultz J. E. Immunocytochemical localization of cyclic GMP, cGMP-dependent protein kinase, calmodulin and calcineurin in Paramecium tetraurelia. Eur J Cell Biol. 1983 Nov;32(1):164–170. [PubMed] [Google Scholar]
  30. Knoll G., Kerboeuf D., Plattner H. A rapid calcium influx during exocytosis in Paramecium cells is followed by a rise in cyclic GMP within 1 s. FEBS Lett. 1992 Jun 15;304(2-3):265–268. doi: 10.1016/0014-5793(92)80634-s. [DOI] [PubMed] [Google Scholar]
  31. Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3',5'-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1349–1355. doi: 10.1073/pnas.64.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  33. Li H. C. Activation of brain calcineurin phosphatase towards nonprotein phosphoesters by Ca2+, calmodulin, and Mg2+. J Biol Chem. 1984 Jul 25;259(14):8801–8807. [PubMed] [Google Scholar]
  34. Liu J., Farmer J. D., Jr, Lane W. S., Friedman J., Weissman I., Schreiber S. L. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991 Aug 23;66(4):807–815. doi: 10.1016/0092-8674(91)90124-h. [DOI] [PubMed] [Google Scholar]
  35. MacLean C. M., Marciniak S. J., Hall D. V., Edwardson J. M. Involvement of a phosphoprotein on the zymogen granule membrane in the control of regulated exocytosis in the exocrine pancreas. J Cell Sci. 1993 Oct;106(Pt 2):663–670. doi: 10.1242/jcs.106.2.663. [DOI] [PubMed] [Google Scholar]
  36. Mason P. A., Nelson D. L. Cyclic AMP-dependent protein kinases of Paramecium. I. Chromatographic and physical properties of the enzymes from cilia. Biochim Biophys Acta. 1989 Jan 17;1010(1):108–115. doi: 10.1016/0167-4889(89)90190-0. [DOI] [PubMed] [Google Scholar]
  37. Miglietta L. A., Nelson D. L. A novel cGMP-dependent protein kinase from Paramecium. J Biol Chem. 1988 Nov 5;263(31):16096–16105. [PubMed] [Google Scholar]
  38. Momayezi M., Kersken H., Gras U., Vilmart-Seuwen J., Plattner H. Calmodulin in Paramecium tetraurelia: localization from the in vivo to the ultrastructural level. J Histochem Cytochem. 1986 Dec;34(12):1621–1638. doi: 10.1177/34.12.3097118. [DOI] [PubMed] [Google Scholar]
  39. Momayezi M., Lumpert C. J., Kersken H., Gras U., Plattner H., Krinks M. H., Klee C. B. Exocytosis induction in Paramecium tetraurelia cells by exogenous phosphoprotein phosphatase in vivo and in vitro: possible involvement of calcineurin in exocytotic membrane fusion. J Cell Biol. 1987 Jul;105(1):181–189. doi: 10.1083/jcb.105.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Murtaugh T. J., Gilligan D. M., Satir B. H. Purification of and production of an antibody against a 63,000 Mr stimulus-sensitive phosphoprotein in Paramecium. J Biol Chem. 1987 Nov 15;262(32):15734–15739. [PubMed] [Google Scholar]
  41. Nichols R. A., Suplick G. R., Brown J. M. Calcineurin-mediated protein dephosphorylation in brain nerve terminals regulates the release of glutamate. J Biol Chem. 1994 Sep 23;269(38):23817–23823. [PubMed] [Google Scholar]
  42. Norling L. L., Colca J. R., Kelly P. T., McDaniel M. L., Landt M. Activation of calcium and calmodulin dependent protein kinase II during stimulation of insulin secretion. Cell Calcium. 1994 Aug;16(2):137–150. doi: 10.1016/0143-4160(94)90008-6. [DOI] [PubMed] [Google Scholar]
  43. O'Sullivan A. J., Jamieson J. D. Protein kinase A modulates Ca(2+)- and protein kinase C-dependent amylase release in permeabilized rat pancreatic acini. Biochem J. 1992 Oct 15;287(Pt 2):403–406. doi: 10.1042/bj2870403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Plattner H., Lumpert C. J., Knoll G., Kissmehl R., Höhne B., Momayezi M., Glas-Albrecht R. Stimulus-secretion coupling in Paramecium cells. Eur J Cell Biol. 1991 Jun;55(1):3–16. [PubMed] [Google Scholar]
  45. Plattner H. Regulation of membrane fusion during exocytosis. Int Rev Cytol. 1989;119:197–286. doi: 10.1016/s0074-7696(08)60652-x. [DOI] [PubMed] [Google Scholar]
  46. Plattner H., Stürzl R., Matt H. Synchronous exocytosis in Paramecium cells. IV. Polyamino compounds as potent trigger agents for repeatable trigger-redocking cycles. Eur J Cell Biol. 1985 Jan;36(1):32–37. [PubMed] [Google Scholar]
  47. Pollack S. Mutations affecting the trichocysts in Paramecium aurelia. I. Morphology and description of the mutants. J Protozool. 1974 May;21(2):352–362. doi: 10.1111/j.1550-7408.1974.tb03669.x. [DOI] [PubMed] [Google Scholar]
  48. Satir B. H. Signal transduction events associated with exocytosis in ciliates. J Protozool. 1989 Jul-Aug;36(4):382–389. doi: 10.1111/j.1550-7408.1989.tb05531.x. [DOI] [PubMed] [Google Scholar]
  49. Satir B. H., Srisomsap C., Reichman M., Marchase R. B. Parafusin, an exocytic-sensitive phosphoprotein, is the primary acceptor for the glucosylphosphotransferase in Paramecium tetraurelia and rat liver. J Cell Biol. 1990 Sep;111(3):901–907. doi: 10.1083/jcb.111.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Schultz J. E., Jantzen H. M. Cyclic nucleotide-dependent protein kinases from cilia of Paramecium tetraurelia: partial purification and characterization. FEBS Lett. 1980 Jul 11;116(1):75–78. doi: 10.1016/0014-5793(80)80532-1. [DOI] [PubMed] [Google Scholar]
  51. Shenolikar S., Nairn A. C. Protein phosphatases: recent progress. Adv Second Messenger Phosphoprotein Res. 1991;23:1–121. [PubMed] [Google Scholar]
  52. Son M., Gundersen R. E., Nelson D. L. A second member of the novel Ca(2+)-dependent protein kinase family from Paramecium tetraurelia. Purification and characterization. J Biol Chem. 1993 Mar 15;268(8):5940–5948. [PubMed] [Google Scholar]
  53. Stecher B., Höhne B., Gras U., Momayezi M., Glas-Albrecht R., Plattner H. Involvement of a 65 kDa phosphoprotein in the regulation of membrane fusion during exocytosis in Paramecium cells. FEBS Lett. 1987 Oct 19;223(1):25–32. doi: 10.1016/0014-5793(87)80503-3. [DOI] [PubMed] [Google Scholar]
  54. Steinhardt R. A., Alderton J. M. Calmodulin confers calcium sensitivity on secretory exocytosis. Nature. 1982 Jan 14;295(5845):154–155. doi: 10.1038/295154a0. [DOI] [PubMed] [Google Scholar]
  55. Subramanian S. V., Satir B. H. Carbohydrate cycling in signal transduction: parafusin, a phosphoglycoprotein and possible Ca(2+)-dependent transducer molecule in exocytosis in Paramecium. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11297–11301. doi: 10.1073/pnas.89.23.11297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Subramanian S. V., Wyroba E., Andersen A. P., Satir B. H. Cloning and sequencing of parafusin, a calcium-dependent exocytosis-related phosphoglycoprotein. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9832–9836. doi: 10.1073/pnas.91.21.9832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Takuma T., Ichida T. Catalytic subunit of protein kinase A induces amylase release from streptolysin O-permeabilized parotid acini. J Biol Chem. 1994 Sep 2;269(35):22124–22128. [PubMed] [Google Scholar]
  58. Thalhofer H. P., Daum G., Harris B. G., Hofer H. W. Identification of two different phosphofructokinase-phosphorylating protein kinases from Ascaris suum muscle. J Biol Chem. 1988 Jan 15;263(2):952–957. [PubMed] [Google Scholar]
  59. Treptau T., Kissmehl R., Wissmann J. D., Plattner H. A 63 kDa phosphoprotein undergoing rapid dephosphorylation during exocytosis in Paramecium cells shares biochemical characteristics with phosphoglucomutase. Biochem J. 1995 Jul 15;309(Pt 2):557–567. doi: 10.1042/bj3090557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Wagner P. D., Vu N. D. Regulation of norepinephrine secretion in permeabilized PC12 cells by Ca2(+)-stimulated phosphorylation. Effects of protein phosphatases and phosphatase inhibitors. J Biol Chem. 1990 Jun 25;265(18):10352–10357. [PubMed] [Google Scholar]
  61. Walczak C. E., Anderson R. A., Nelson D. L. Identification of a family of casein kinases in Paramecium: biochemical characterization and cellular localization. Biochem J. 1993 Dec 15;296(Pt 3):729–735. doi: 10.1042/bj2960729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Winston V. Use of a polynomial exponential function to describe migration of proteins on sodium dodecyl sulfate-polyacrylamide gels. Electrophoresis. 1989 Mar;10(3):220–222. doi: 10.1002/elps.1150100312. [DOI] [PubMed] [Google Scholar]
  63. Zieseniss E., Plattner H. Synchronous exocytosis in Paramecium cells involves very rapid (less than or equal to 1 s), reversible dephosphorylation of a 65-kD phosphoprotein in exocytosis-competent strains. J Cell Biol. 1985 Dec;101(6):2028–2035. doi: 10.1083/jcb.101.6.2028. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES