Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jul 1;317(Pt 1):89–95. doi: 10.1042/bj3170089

The genes YNI1 and YNR1, encoding nitrite reductase and nitrate reductase respectively in the yeast Hansenula polymorpha, are clustered and co-ordinately regulated.

N Brito 1, J Avila 1, M D Perez 1, C Gonzalez 1, J M Siverio 1
PMCID: PMC1217490  PMID: 8694791

Abstract

The nitrite reductase-encoding gene (YNI1) from the yeast Hansenula polymorpha was isolated from a lambda EMBL3 H. polymorpha genomic DNA library, using as a probe a 481 bp DNA fragment from the gene of Aspergillus nidulans encoding nitrite reductase (niiA). An open reading frame of 3132 bp, encoding a putative protein of 1044 amino acids with high similarity with nitrite reductases from fungi, was located by DNA sequencing in the phages lambdaNB5 and lambdaJA13. Genes YNI1 and YNR1 (encoding nitrate reductase) are clustered, separated by 1700 bp. Northern blot analysis showed that expression of YNI1 and YNR1 is co-ordinately regulated; induced by nitrate and nitrite and repressed by sources of reduced nitrogen, even in the presence of nitrate. A mutant lacking nitrite reductase activity was obtained by deletion of the chromosomal copy of YNI1. The mutant does not grow in nitrate or in nitrite; it exhibits a similar level of transcription of YNR1 to the wild type, but the nitrate reductase enzymic activity is only about 50% of the wild type. In the presence of nitrate the delta ynil::URA3 mutant extrudes approx. 24 nmol of nitrite/h per mg of yeast (wet weight), about five times more than the wild type.

Full Text

The Full Text of this article is available as a PDF (778.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Avila J., Pérez M. D., Brito N., González C., Siverio J. M. Cloning and disruption of the YNR1 gene encoding the nitrate reductase apoenzyme of the yeast Hansenula polymorpha. FEBS Lett. 1995 Jun 12;366(2-3):137–142. doi: 10.1016/0014-5793(95)00511-7. [DOI] [PubMed] [Google Scholar]
  3. Banks G. R., Shelton P. A., Kanuga N., Holden D. W., Spanos A. The Ustilago maydis nar1 gene encoding nitrate reductase activity: sequence and transcriptional regulation. Gene. 1993 Sep 6;131(1):69–78. doi: 10.1016/0378-1119(93)90670-x. [DOI] [PubMed] [Google Scholar]
  4. Campbell W. H., Kinghorn K. R. Functional domains of assimilatory nitrate reductases and nitrite reductases. Trends Biochem Sci. 1990 Aug;15(8):315–319. doi: 10.1016/0968-0004(90)90021-3. [DOI] [PubMed] [Google Scholar]
  5. Carlson M., Botstein D. Two differentially regulated mRNAs with different 5' ends encode secreted with intracellular forms of yeast invertase. Cell. 1982 Jan;28(1):145–154. doi: 10.1016/0092-8674(82)90384-1. [DOI] [PubMed] [Google Scholar]
  6. Cove D. J. Genetic studies of nitrate assimilation in Aspergillus nidulans. Biol Rev Camb Philos Soc. 1979 Aug;54(3):291–327. doi: 10.1111/j.1469-185x.1979.tb01014.x. [DOI] [PubMed] [Google Scholar]
  7. Cove D. J., Pateman J. A. Autoregulation of the synthesis of nitrate reductase in Aspergillus nidulans. J Bacteriol. 1969 Mar;97(3):1374–1378. doi: 10.1128/jb.97.3.1374-1378.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crawford N. M., Arst H. N., Jr The molecular genetics of nitrate assimilation in fungi and plants. Annu Rev Genet. 1993;27:115–146. doi: 10.1146/annurev.ge.27.120193.000555. [DOI] [PubMed] [Google Scholar]
  9. Cunningham T. S., Cooper T. G. Expression of the DAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression. Mol Cell Biol. 1991 Dec;11(12):6205–6215. doi: 10.1128/mcb.11.12.6205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Engler-Blum G., Meier M., Frank J., Müller G. A. Reduction of background problems in nonradioactive northern and Southern blot analyses enables higher sensitivity than 32P-based hybridizations. Anal Biochem. 1993 May 1;210(2):235–244. doi: 10.1006/abio.1993.1189. [DOI] [PubMed] [Google Scholar]
  11. Exley G. E., Colandene J. D., Garrett R. H. Molecular cloning, characterization, and nucleotide sequence of nit-6, the structural gene for nitrite reductase in Neurospora crassa. J Bacteriol. 1993 Apr;175(8):2379–2392. doi: 10.1128/jb.175.8.2379-2392.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Faber K. N., Haima P., Harder W., Veenhuis M., AB G. Highly-efficient electrotransformation of the yeast Hansenula polymorpha. Curr Genet. 1994 Apr;25(4):305–310. doi: 10.1007/BF00351482. [DOI] [PubMed] [Google Scholar]
  13. Garrett R. H., Amy N. K. Nitrate assimilation in fungi. Adv Microb Physiol. 1978;18:1–65. doi: 10.1016/s0065-2911(08)60414-2. [DOI] [PubMed] [Google Scholar]
  14. Gellissen G., Hollenberg C. P., Janowicz Z. A. Gene expression in methylotrophic yeasts. Bioprocess Technol. 1995;22:195–239. [PubMed] [Google Scholar]
  15. González C., González G., Avila J., Pérez M. D., Brito N., Siverio J. M. Nitrite causes reversible inactivation of nitrate reductase in the yeast Hansenula anomala. Microbiology. 1994 Oct;140(Pt 10):2633–2637. doi: 10.1099/00221287-140-10-2633. [DOI] [PubMed] [Google Scholar]
  16. González C., Siverio J. M. Effect of nitrogen source on the levels of nitrate reductase in the yeast Hansenula anomala. J Gen Microbiol. 1992 Jul;138(7):1445–1451. doi: 10.1099/00221287-138-7-1445. [DOI] [PubMed] [Google Scholar]
  17. Higgins D. G., Sharp P. M. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci. 1989 Apr;5(2):151–153. doi: 10.1093/bioinformatics/5.2.151. [DOI] [PubMed] [Google Scholar]
  18. Hinze H., Holzer H. Analysis of the energy metabolism after incubation of Saccharomyces cerevisiae with sulfite or nitrite. Arch Microbiol. 1986 Jun;145(1):27–31. doi: 10.1007/BF00413023. [DOI] [PubMed] [Google Scholar]
  19. Johnstone I. L., McCabe P. C., Greaves P., Gurr S. J., Cole G. E., Brow M. A., Unkles S. E., Clutterbuck A. J., Kinghorn J. R., Innis M. A. Isolation and characterisation of the crnA-niiA-niaD gene cluster for nitrate assimilation in Aspergillus nidulans. Gene. 1990 Jun 15;90(2):181–192. doi: 10.1016/0378-1119(90)90178-t. [DOI] [PubMed] [Google Scholar]
  20. Lancaster J. R., Vega J. M., Kamin H., Orme-Johnson N. R., Orme-Johnson W. H., Krueger R. J., Siegel L. M. Identification of the iron-sulfur center of spinach ferredoxin-nitrite reductase as a tetranuclear center, and preliminary EPR studies of mechanism. J Biol Chem. 1979 Feb 25;254(4):1268–1272. [PubMed] [Google Scholar]
  21. Lin J. T., Goldman B. S., Stewart V. Structures of genes nasA and nasB, encoding assimilatory nitrate and nitrite reductases in Klebsiella pneumoniae M5al. J Bacteriol. 1993 Apr;175(8):2370–2378. doi: 10.1128/jb.175.8.2370-2378.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Luque I., Flores E., Herrero A. Nitrite reductase gene from Synechococcus sp. PCC 7942: homology between cyanobacterial and higher-plant nitrite reductases. Plant Mol Biol. 1993 Mar;21(6):1201–1205. doi: 10.1007/BF00023618. [DOI] [PubMed] [Google Scholar]
  23. Merckelbach A., Gödecke S., Janowicz Z. A., Hollenberg C. P. Cloning and sequencing of the ura3 locus of the methylotrophic yeast Hansenula polymorpha and its use for the generation of a deletion by gene replacement. Appl Microbiol Biotechnol. 1993 Nov;40(2-3):361–364. doi: 10.1007/BF00170393. [DOI] [PubMed] [Google Scholar]
  24. Nagawa F., Fink G. R. The relationship between the "TATA" sequence and transcription initiation sites at the HIS4 gene of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8557–8561. doi: 10.1073/pnas.82.24.8557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ostrowski J., Wu J. Y., Rueger D. C., Miller B. E., Siegel L. M., Kredich N. M. Characterization of the cysJIH regions of Salmonella typhimurium and Escherichia coli B. DNA sequences of cysI and cysH and a model for the siroheme-Fe4S4 active center of sulfite reductase hemoprotein based on amino acid homology with spinach nitrite reductase. J Biol Chem. 1989 Sep 15;264(26):15726–15737. [PubMed] [Google Scholar]
  26. Peakman T., Crouzet J., Mayaux J. F., Busby S., Mohan S., Harborne N., Wootton J., Nicolson R., Cole J. Nucleotide sequence, organisation and structural analysis of the products of genes in the nirB-cysG region of the Escherichia coli K-12 chromosome. Eur J Biochem. 1990 Jul 31;191(2):315–323. doi: 10.1111/j.1432-1033.1990.tb19125.x. [DOI] [PubMed] [Google Scholar]
  27. Pearson W. R. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 1990;183:63–98. doi: 10.1016/0076-6879(90)83007-v. [DOI] [PubMed] [Google Scholar]
  28. Prodouz K. N., Garrett R. H. Neurospora crassa NAD(P)H-nitrite reductase. Studies on its composition and structure. J Biol Chem. 1981 Sep 25;256(18):9711–9717. [PubMed] [Google Scholar]
  29. Quesada A., Galván A., Fernández E. Identification of nitrate transporter genes in Chlamydomonas reinhardtii. Plant J. 1994 Mar;5(3):407–419. doi: 10.1111/j.1365-313x.1994.00407.x. [DOI] [PubMed] [Google Scholar]
  30. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Unkles S. E., Campbell E. I., Punt P. J., Hawker K. L., Contreras R., Hawkins A. R., Van den Hondel C. A., Kinghorn J. R. The Aspergillus niger niaD gene encoding nitrate reductase: upstream nucleotide and amino acid sequence comparisons. Gene. 1992 Feb 15;111(2):149–155. doi: 10.1016/0378-1119(92)90682-f. [DOI] [PubMed] [Google Scholar]
  32. Unkles S. E., Hawker K. L., Grieve C., Campbell E. I., Montague P., Kinghorn J. R. crnA encodes a nitrate transporter in Aspergillus nidulans. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):204–208. doi: 10.1073/pnas.88.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vaucheret H., Kronenberger J., Lepingle A., Vilaine F., Boutin J. P., Caboche M. Inhibition of tobacco nitrite reductase activity by expression of antisense RNA. Plant J. 1992 Jul;2(4):559–569. [PubMed] [Google Scholar]
  34. Vega J. M., Kamin H. Spinach nitrite reductase. Purification and properties of a siroheme-containing iron-sulfur enzyme. J Biol Chem. 1977 Feb 10;252(3):896–909. [PubMed] [Google Scholar]
  35. de la Fuente J. M., Alvarez A., Nombela C., Sanchez M. Flow cytometric analysis of Saccharomyces cerevisiae autolytic mutants and protoplasts. Yeast. 1992 Jan;8(1):39–45. doi: 10.1002/yea.320080104. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES