Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jul 15;317(Pt 2):353–359. doi: 10.1042/bj3170353

Hexose uptake in Trypanosoma cruzi: structure-activity relationship between substrate and transporter.

E Tetaud 1, S Chabas 1, C Giroud 1, M P Barrett 1, T Baltz 1
PMCID: PMC1217495  PMID: 8713058

Abstract

The gene encoding a hexose transporter, TcrHt1, from Trypanosoma cruzi has been functionally expressed in mammalian Chinese hamster ovary cells. Kinetic parameters of the heterologously expressed protein are very similar to those of the transporter identified in T. cruzi epimastigotes, confirming that TcrHT1 is the major transporter functioning in these parasites. A detailed analysis of substrate recognition using analogues of D-glucose substituted at each carbon position has been performed. The glucose transporter of T. cruzi does not recognize C-3 or C-6 analogues of D-glucose, whereas these analogues were recognized by the glucose transporter of bloodstream-form T. brucei. As for other kinetoplastid transporters, but in stark contrast to the mammalian GLUT family, TcrHT1 can also transport D-fructose, with relatively high affinity (Km = 0.682 +/- 0.003 mM). Amino acid side-chain-modifying reagents were also used to identify residues of the transporter present at the substrate-binding site. While specific modifiers of cysteine, histidine and arginine all inhibited catalytic activity, protection using substrate was only observed using the arginine-specific reagent, phenylglyoxal. Reagents which modify lysine residues had no effect on transport.

Full Text

The Full Text of this article is available as a PDF (497.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asano T., Takata K., Katagiri H., Tsukuda K., Lin J. L., Ishihara H., Inukai K., Hirano H., Yazaki Y., Oka Y. Domains responsible for the differential targeting of glucose transporter isoforms. J Biol Chem. 1992 Sep 25;267(27):19636–19641. [PubMed] [Google Scholar]
  2. Baldwin S. A. Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochim Biophys Acta. 1993 Jun 8;1154(1):17–49. doi: 10.1016/0304-4157(93)90015-g. [DOI] [PubMed] [Google Scholar]
  3. Barrett M. P., Tetaud E., Seyfang A., Bringaud F., Baltz T. Functional expression and characterization of the Trypanosoma brucei procyclic glucose transporter, THT2. Biochem J. 1995 Dec 15;312(Pt 3):687–691. doi: 10.1042/bj3120687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Bringaud F., Baltz T. A potential hexose transporter gene expressed predominantly in the bloodstream form of Trypanosoma brucei. Mol Biochem Parasitol. 1992 May;52(1):111–121. doi: 10.1016/0166-6851(92)90040-q. [DOI] [PubMed] [Google Scholar]
  6. Bringaud F., Baltz T. Differential regulation of two distinct families of glucose transporter genes in Trypanosoma brucei. Mol Cell Biol. 1993 Feb;13(2):1146–1154. doi: 10.1128/mcb.13.2.1146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burant C. F., Takeda J., Brot-Laroche E., Bell G. I., Davidson N. O. Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem. 1992 Jul 25;267(21):14523–14526. [PubMed] [Google Scholar]
  8. Burchmore R. J., Hart D. T. Glucose transport in amastigotes and promastigotes of Leishmania mexicana mexicana. Mol Biochem Parasitol. 1995 Oct;74(1):77–86. doi: 10.1016/0166-6851(95)02485-9. [DOI] [PubMed] [Google Scholar]
  9. Cairns B. R., Collard M. W., Landfear S. M. Developmentally regulated gene from Leishmania encodes a putative membrane transport protein. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7682–7686. doi: 10.1073/pnas.86.20.7682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen C. A., Okayama H. Calcium phosphate-mediated gene transfer: a highly efficient transfection system for stably transforming cells with plasmid DNA. Biotechniques. 1988 Jul-Aug;6(7):632–638. [PubMed] [Google Scholar]
  11. Colville C. A., Seatter M. J., Jess T. J., Gould G. W., Thomas H. M. Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors. Biochem J. 1993 Mar 15;290(Pt 3):701–706. doi: 10.1042/bj2900701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eisenthal R., Game S., Holman G. D. Specificity and kinetics of hexose transport in Trypanosoma brucei. Biochim Biophys Acta. 1989 Oct 2;985(1):81–89. doi: 10.1016/0005-2736(89)90107-7. [DOI] [PubMed] [Google Scholar]
  13. Fry A. J., Towner P., Holman G. D., Eisenthal R. Transport of D-fructose and its analogues by Trypanosoma brucei. Mol Biochem Parasitol. 1993 Jul;60(1):9–18. doi: 10.1016/0166-6851(93)90023-q. [DOI] [PubMed] [Google Scholar]
  14. Gould G. W., Holman G. D. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993 Oct 15;295(Pt 2):329–341. doi: 10.1042/bj2950329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gruenberg J., Sharma P. R., Deshusses J. D-Glucose transport in Trypanosoma brucei. D-Glucose transport is the rate-limiting step of its metabolism. Eur J Biochem. 1978 Sep 1;89(2):461–469. doi: 10.1111/j.1432-1033.1978.tb12549.x. [DOI] [PubMed] [Google Scholar]
  16. Harrison S. A., Buxton J. M., Helgerson A. L., MacDonald R. G., Chlapowski F. J., Carruthers A., Czech M. P. Insulin action on activity and cell surface disposition of human HepG2 glucose transporters expressed in Chinese hamster ovary cells. J Biol Chem. 1990 Apr 5;265(10):5793–5801. [PubMed] [Google Scholar]
  17. Hasegawa K., Anraku Y., Kasahara M., Akamatsu Y., Nishijima M. Isolation and characterization of Chinese hamster ovary cell mutants defective in glucose transport. Biochim Biophys Acta. 1990 Mar 9;1051(3):221–229. doi: 10.1016/0167-4889(90)90126-x. [DOI] [PubMed] [Google Scholar]
  18. Hresko R. C., Kruse M., Strube M., Mueckler M. Topology of the Glut 1 glucose transporter deduced from glycosylation scanning mutagenesis. J Biol Chem. 1994 Aug 12;269(32):20482–20488. [PubMed] [Google Scholar]
  19. Katagiri H., Asano T., Ishihara H., Tsukuda K., Lin J. L., Inukai K., Kikuchi M., Yazaki Y., Oka Y. Replacement of intracellular C-terminal domain of GLUT1 glucose transporter with that of GLUT2 increases Vmax and Km of transport activity. J Biol Chem. 1992 Nov 5;267(31):22550–22555. [PubMed] [Google Scholar]
  20. Knodler L. A., Schofield P. J., Edwards M. R. Glucose transport in Crithidia luciliae. Mol Biochem Parasitol. 1992 Nov;56(1):1–13. doi: 10.1016/0166-6851(92)90149-e. [DOI] [PubMed] [Google Scholar]
  21. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Langford C. K., Ewbank S. A., Hanson S. S., Ullman B., Landfear S. M. Molecular characterization of two genes encoding members of the glucose transporter superfamily in the parasitic protozoan Leishmania donovani. Mol Biochem Parasitol. 1992 Oct;55(1-2):51–64. doi: 10.1016/0166-6851(92)90126-5. [DOI] [PubMed] [Google Scholar]
  23. Langford C. K., Kavanaugh M. P., Stenberg P. E., Drew M. E., Zhang W., Landfear S. M. Functional expression and subcellular localization of a high-Km hexose transporter from Leishmania donovani. Biochemistry. 1995 Sep 19;34(37):11814–11821. doi: 10.1021/bi00037a020. [DOI] [PubMed] [Google Scholar]
  24. Langford C. K., Little B. M., Kavanaugh M. P., Landfear S. M. Functional expression of two glucose transporter isoforms from the parasitic protozoan Leishmania enriettii. J Biol Chem. 1994 Jul 8;269(27):17939–17943. [PubMed] [Google Scholar]
  25. Mueckler M., Caruso C., Baldwin S. A., Panico M., Blench I., Morris H. R., Allard W. J., Lienhard G. E., Lodish H. F. Sequence and structure of a human glucose transporter. Science. 1985 Sep 6;229(4717):941–945. doi: 10.1126/science.3839598. [DOI] [PubMed] [Google Scholar]
  26. Munoz-Antonia T., Richards F. F., Ullu E. Differences in glucose transport between blood stream and procyclic forms of Trypanosoma brucei rhodesiense. Mol Biochem Parasitol. 1991 Jul;47(1):73–81. doi: 10.1016/0166-6851(91)90149-z. [DOI] [PubMed] [Google Scholar]
  27. Parsons M., Nielsen B. Active transport of 2-deoxy-D-glucose in Trypanosoma brucei procyclic forms. Mol Biochem Parasitol. 1990 Sep-Oct;42(2):197–203. doi: 10.1016/0166-6851(90)90162-f. [DOI] [PubMed] [Google Scholar]
  28. RYLEY J. F. Studies on the metabolism of the protozoa. 9. Comparative metabolism of blood-stream and culture forms of Trypanosoma rhodesiense. Biochem J. 1962 Oct;85:211–223. doi: 10.1042/bj0850211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schaefer F. W., 3rd, Martin E., Mukkada A. J. The glucose transport system in Leishmania tropica promastigotes. J Protozool. 1974 Oct;21(4):592–596. doi: 10.1111/j.1550-7408.1974.tb03708.x. [DOI] [PubMed] [Google Scholar]
  30. Seyfang A., Duszenko M. Specificity of glucose transport in Trypanosoma brucei. Effective inhibition by phloretin and cytochalasin B. Eur J Biochem. 1991 Nov 15;202(1):191–196. doi: 10.1111/j.1432-1033.1991.tb16362.x. [DOI] [PubMed] [Google Scholar]
  31. Southworth G. G., Read C. P. Carbohydrate transport in Trypanosoma gambiense. J Protozool. 1969 Nov;16(4):720–723. doi: 10.1111/j.1550-7408.1969.tb02332.x. [DOI] [PubMed] [Google Scholar]
  32. Stack S. P., Stein D. A., Landfear S. M. Structural isoforms of a membrane transport protein from Leishmania enriettii. Mol Cell Biol. 1990 Dec;10(12):6785–6790. doi: 10.1128/mcb.10.12.6785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ter Kuile B. H., Opperdoes F. R. Glucose uptake by Trypanosoma brucei. Rate-limiting steps in glycolysis and regulation of the glycolytic flux. J Biol Chem. 1991 Jan 15;266(2):857–862. [PubMed] [Google Scholar]
  34. Ter Kuile B. H., Opperdoes F. R. Uptake and turnover of glucose in Leishmania donovani. Mol Biochem Parasitol. 1993 Aug;60(2):313–321. doi: 10.1016/0166-6851(93)90142-k. [DOI] [PubMed] [Google Scholar]
  35. Tetaud E., Bringaud F., Chabas S., Barrett M. P., Baltz T. Characterization of glucose transport and cloning of a hexose transporter gene in Trypanosoma cruzi. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8278–8282. doi: 10.1073/pnas.91.17.8278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. WARREN L. G., KITZMAN W. B. METABOLISM OF SCHIZOTRYPANUM CRUZI CHAGAS. II. GALACTOSE UTILIZATION. J Parasitol. 1963 Oct;49:808–813. [PubMed] [Google Scholar]
  37. Zilberstein D., Dwyer D. M. Glucose transport in Leishmania donovani promastigotes. Mol Biochem Parasitol. 1984 Jul;12(3):327–336. doi: 10.1016/0166-6851(84)90089-6. [DOI] [PubMed] [Google Scholar]
  38. Zilberstein D., Dwyer D. M. Glucose transport in Leishmania donovani promastigotes. Mol Biochem Parasitol. 1984 Jul;12(3):327–336. doi: 10.1016/0166-6851(84)90089-6. [DOI] [PubMed] [Google Scholar]
  39. Zilberstein D., Dwyer D. M. Protonmotive force-driven active transport of D-glucose and L-proline in the protozoan parasite Leishmania donovani. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1716–1720. doi: 10.1073/pnas.82.6.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. ter Kuile B. H., Opperdoes F. R. Mutual adjustment of glucose uptake and metabolism in Trypanosoma brucei grown in a chemostat. J Bacteriol. 1992 Feb;174(4):1273–1279. doi: 10.1128/jb.174.4.1273-1279.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES