Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jul 15;317(Pt 2):515–522. doi: 10.1042/bj3170515

Effects of steroids and verapamil on P-glycoprotein ATPase activity: progesterone, desoxycorticosterone, corticosterone and verapamil are mutually non-exclusive modulators.

S Orlowski 1, L M Mir 1, J Belehradek Jr 1, M Garrigos 1
PMCID: PMC1217517  PMID: 8713080

Abstract

P-glycoprotein (P-gp) is a membranous ATPase responsible for the multidrug resistance (MDR) phenotype. Using membrane vesicles prepared from the highly resistant cell line DC-3F/ADX we studied the influence of P-gp ATPase activity of four progesterone derivatives which specifically bind to P-gp and reverse MDR. Progesterone and desoxycorticosterone stimulate P-gp ATPase activity with, respectively, apparent concentrations giving half-maximal activation of 20-25 microM and 40-50 microM, and activation factors of 2.3 (at 100 microM progesterone) and 1.8 (at 170 microM desoxycorticosterone). Hydrocortisone above 100 microM stimulates P-gp ATPase activity while corticosterone has no apparent stimulating effect. Our data are consistent with the location of the binding sites for the progesterone derivatives on the P-gp membranous domain. The effects of these steroids on verapamil-stimulated P-gp ATPase activity support a non-competitive mechanism, i.e. the binding sites for verapamil and steroids are mutually non-exclusive for P-gp ATPase modulation. A similar non-competitive inhibition of progesterone-stimulated P-gp ATPase activity by desoxycorticosterone or by corticosterone leads to the conclusion that these steroids, although sharing related structures, have distinct modulating sites on P-gp. As expected from their mutually non-exclusive interactions on P-gp, progesterone and verapamil when mixed induce a synergistic modulation of P-gp ATPase activity. Since drug transport by P-gp is believed to be coupled to its ATPase activity, a corresponding synergistic effect of these two modulators for the inhibition of P-gp-mediated drug resistance can be expected.

Full Text

The Full Text of this article is available as a PDF (664.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambudkar S. V., Lelong I. H., Zhang J., Cardarelli C. O., Gottesman M. M., Pastan I. Partial purification and reconstitution of the human multidrug-resistance pump: characterization of the drug-stimulatable ATP hydrolysis. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8472–8476. doi: 10.1073/pnas.89.18.8472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arceci R. J., Croop J. M., Horwitz S. B., Housman D. The gene encoding multidrug resistance is induced and expressed at high levels during pregnancy in the secretory epithelium of the uterus. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4350–4354. doi: 10.1073/pnas.85.12.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arrowsmith M., Hadgraft J., Kellaway I. W. Thermodynamics of steroid partitioning in dimyristoylphosphatidylcholine liposomes. Biochim Biophys Acta. 1983 Jan 7;750(1):149–156. doi: 10.1016/0005-2760(83)90214-x. [DOI] [PubMed] [Google Scholar]
  4. Azzaria M., Schurr E., Gros P. Discrete mutations introduced in the predicted nucleotide-binding sites of the mdr1 gene abolish its ability to confer multidrug resistance. Mol Cell Biol. 1989 Dec;9(12):5289–5297. doi: 10.1128/mcb.9.12.5289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berenbaum M. C. What is synergy? Pharmacol Rev. 1989 Jun;41(2):93–141. [PubMed] [Google Scholar]
  6. Biedler J. L., Riehm H. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies. Cancer Res. 1970 Apr;30(4):1174–1184. [PubMed] [Google Scholar]
  7. Bradley G., Juranka P. F., Ling V. Mechanism of multidrug resistance. Biochim Biophys Acta. 1988 Aug 3;948(1):87–128. doi: 10.1016/0304-419x(88)90006-6. [DOI] [PubMed] [Google Scholar]
  8. Carson M. R., Travis S. M., Welsh M. J. The two nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator (CFTR) have distinct functions in controlling channel activity. J Biol Chem. 1995 Jan 27;270(4):1711–1717. doi: 10.1074/jbc.270.4.1711. [DOI] [PubMed] [Google Scholar]
  9. Doige C. A., Yu X., Sharom F. J. ATPase activity of partially purified P-glycoprotein from multidrug-resistant Chinese hamster ovary cells. Biochim Biophys Acta. 1992 Aug 24;1109(2):149–160. doi: 10.1016/0005-2736(92)90078-z. [DOI] [PubMed] [Google Scholar]
  10. Doige C. A., Yu X., Sharom F. J. The effects of lipids and detergents on ATPase-active P-glycoprotein. Biochim Biophys Acta. 1993 Feb 23;1146(1):65–72. doi: 10.1016/0005-2736(93)90339-2. [DOI] [PubMed] [Google Scholar]
  11. Fleming G. F., Amato J. M., Agresti M., Safa A. R. Megestrol acetate reverses multidrug resistance and interacts with P-glycoprotein. Cancer Chemother Pharmacol. 1992;29(6):445–449. doi: 10.1007/BF00684845. [DOI] [PubMed] [Google Scholar]
  12. Ford J. M., Hait W. N. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev. 1990 Sep;42(3):155–199. [PubMed] [Google Scholar]
  13. Garrigos M., Belehradek J., Jr, Mir L. M., Orlowski S. Absence of cooperativity for MgATP and verapamil effects on the ATPase activity of P-glycoprotein containing membrane vesicles. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1034–1041. doi: 10.1006/bbrc.1993.2355. [DOI] [PubMed] [Google Scholar]
  14. Gottesman M. M., Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
  15. Hamada H., Tsuruo T. Characterization of the ATPase activity of the Mr 170,000 to 180,000 membrane glycoprotein (P-glycoprotein) associated with multidrug resistance in K562/ADM cells. Cancer Res. 1988 Sep 1;48(17):4926–4932. [PubMed] [Google Scholar]
  16. Higgins C. F. Flip-flop: the transmembrane translocation of lipids. Cell. 1994 Nov 4;79(3):393–395. doi: 10.1016/0092-8674(94)90248-8. [DOI] [PubMed] [Google Scholar]
  17. Higgins C. F., Gottesman M. M. Is the multidrug transporter a flippase? Trends Biochem Sci. 1992 Jan;17(1):18–21. doi: 10.1016/0968-0004(92)90419-a. [DOI] [PubMed] [Google Scholar]
  18. Hofsli E., Nissen-Meyer J. Reversal of multidrug resistance by lipophilic drugs. Cancer Res. 1990 Jul 1;50(13):3997–4002. [PubMed] [Google Scholar]
  19. Horio M., Gottesman M. M., Pastan I. ATP-dependent transport of vinblastine in vesicles from human multidrug-resistant cells. Proc Natl Acad Sci U S A. 1988 May;85(10):3580–3584. doi: 10.1073/pnas.85.10.3580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Horio M., Lovelace E., Pastan I., Gottesman M. M. Agents which reverse multidrug-resistance are inhibitors of [3H]vinblastine transport by isolated vesicles. Biochim Biophys Acta. 1991 Jan 9;1061(1):106–110. doi: 10.1016/0005-2736(91)90274-c. [DOI] [PubMed] [Google Scholar]
  21. Ichikawa-Haraguchi M., Sumizawa T., Yoshimura A., Furukawa T., Hiramoto S., Sugita M., Akiyama S. Progesterone and its metabolites: the potent inhibitors of the transporting activity of P-glycoprotein in the adrenal gland. Biochim Biophys Acta. 1993 Nov 28;1158(3):201–208. doi: 10.1016/0304-4165(93)90016-2. [DOI] [PubMed] [Google Scholar]
  22. Jencks W. P. How does a calcium pump pump calcium? J Biol Chem. 1989 Nov 15;264(32):18855–18858. [PubMed] [Google Scholar]
  23. Kamimoto Y., Gatmaitan Z., Hsu J., Arias I. M. The function of Gp170, the multidrug resistance gene product, in rat liver canalicular membrane vesicles. J Biol Chem. 1989 Jul 15;264(20):11693–11698. [PubMed] [Google Scholar]
  24. Loo T. W., Clarke D. M. Reconstitution of drug-stimulated ATPase activity following co-expression of each half of human P-glycoprotein as separate polypeptides. J Biol Chem. 1994 Mar 11;269(10):7750–7755. [PubMed] [Google Scholar]
  25. Lopez M. M., Kosk-Kosicka D. How do volatile anesthetics inhibit Ca(2+)-ATPases? J Biol Chem. 1995 Nov 24;270(47):28239–28245. doi: 10.1074/jbc.270.47.28239. [DOI] [PubMed] [Google Scholar]
  26. Martinez-Azorin F., Teruel J. A., Fernandez-Belda F., Gomez-Fernandez J. C. Effect of diethylstilbestrol and related compounds on the Ca(2+)-transporting ATPase of sarcoplasmic reticulum. J Biol Chem. 1992 Jun 15;267(17):11923–11929. [PubMed] [Google Scholar]
  27. Naito M., Hamada H., Tsuruo T. ATP/Mg2+-dependent binding of vincristine to the plasma membrane of multidrug-resistant K562 cells. J Biol Chem. 1988 Aug 25;263(24):11887–11891. [PubMed] [Google Scholar]
  28. Naito M., Tsuruo T. Competitive inhibition by verapamil of ATP-dependent high affinity vincristine binding to the plasma membrane of multidrug-resistant K562 cells without calcium ion involvement. Cancer Res. 1989 Mar 15;49(6):1452–1455. [PubMed] [Google Scholar]
  29. Naito M., Yusa K., Tsuruo T. Steroid hormones inhibit binding of Vinca alkaloid to multidrug resistance related P-glycoprotein. Biochem Biophys Res Commun. 1989 Feb 15;158(3):1066–1071. doi: 10.1016/0006-291x(89)92830-1. [DOI] [PubMed] [Google Scholar]
  30. Nielsen D., Skovsgaard T. P-glycoprotein as multidrug transporter: a critical review of current multidrug resistant cell lines. Biochim Biophys Acta. 1992 Jul 7;1139(3):169–183. doi: 10.1016/0925-4439(92)90131-6. [DOI] [PubMed] [Google Scholar]
  31. Nooter K., Herweijer H. Multidrug resistance (mdr) genes in human cancer. Br J Cancer. 1991 May;63(5):663–669. doi: 10.1038/bjc.1991.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pereira E., Borrel M. N., Fiallo M., Garnier-Suillerot A. Non-competitive inhibition of P-glycoprotein-associated efflux of THP-adriamycin by verapamil in living K562 leukemia cells. Biochim Biophys Acta. 1994 Jan 11;1225(2):209–216. doi: 10.1016/0925-4439(94)90080-9. [DOI] [PubMed] [Google Scholar]
  33. Qian X. D., Beck W. T. Progesterone photoaffinity labels P-glycoprotein in multidrug-resistant human leukemic lymphoblasts. J Biol Chem. 1990 Nov 5;265(31):18753–18756. [PubMed] [Google Scholar]
  34. Rao U. S., Fine R. L., Scarborough G. A. Antiestrogens and steroid hormones: substrates of the human P-glycoprotein. Biochem Pharmacol. 1994 Jul 19;48(2):287–292. doi: 10.1016/0006-2952(94)90099-x. [DOI] [PubMed] [Google Scholar]
  35. Rao U. S. Mutation of glycine 185 to valine alters the ATPase function of the human P-glycoprotein expressed in Sf9 cells. J Biol Chem. 1995 Mar 24;270(12):6686–6690. [PubMed] [Google Scholar]
  36. Raviv Y., Pollard H. B., Bruggemann E. P., Pastan I., Gottesman M. M. Photosensitized labeling of a functional multidrug transporter in living drug-resistant tumor cells. J Biol Chem. 1990 Mar 5;265(7):3975–3980. [PubMed] [Google Scholar]
  37. Safa A. R. Photoaffinity labeling of the multidrug-resistance-related P-glycoprotein with photoactive analogs of verapamil. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7187–7191. doi: 10.1073/pnas.85.19.7187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sarkadi B., Price E. M., Boucher R. C., Germann U. A., Scarborough G. A. Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase. J Biol Chem. 1992 Mar 5;267(7):4854–4858. [PubMed] [Google Scholar]
  39. Shapiro A. B., Ling V. ATPase activity of purified and reconstituted P-glycoprotein from Chinese hamster ovary cells. J Biol Chem. 1994 Feb 4;269(5):3745–3754. [PubMed] [Google Scholar]
  40. Sharom F. J., Yu X., Doige C. A. Functional reconstitution of drug transport and ATPase activity in proteoliposomes containing partially purified P-glycoprotein. J Biol Chem. 1993 Nov 15;268(32):24197–24202. [PubMed] [Google Scholar]
  41. Sugawara I., Kataoka I., Morishita Y., Hamada H., Tsuruo T., Itoyama S., Mori S. Tissue distribution of P-glycoprotein encoded by a multidrug-resistant gene as revealed by a monoclonal antibody, MRK 16. Cancer Res. 1988 Apr 1;48(7):1926–1929. [PubMed] [Google Scholar]
  42. Tamai I., Safa A. R. Azidopine noncompetitively interacts with vinblastine and cyclosporin A binding to P-glycoprotein in multidrug resistant cells. J Biol Chem. 1991 Sep 5;266(25):16796–16800. [PubMed] [Google Scholar]
  43. Tamai I., Safa A. R. Competitive interaction of cyclosporins with the Vinca alkaloid-binding site of P-glycoprotein in multidrug-resistant cells. J Biol Chem. 1990 Sep 25;265(27):16509–16513. [PubMed] [Google Scholar]
  44. Thiebaut F., Tsuruo T., Hamada H., Gottesman M. M., Pastan I., Willingham M. C. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7735–7738. doi: 10.1073/pnas.84.21.7735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Trezise A. E., Romano P. R., Gill D. R., Hyde S. C., Sepúlveda F. V., Buchwald M., Higgins C. F. The multidrug resistance and cystic fibrosis genes have complementary patterns of epithelial expression. EMBO J. 1992 Dec;11(12):4291–4303. doi: 10.1002/j.1460-2075.1992.tb05528.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Ueda K., Okamura N., Hirai M., Tanigawara Y., Saeki T., Kioka N., Komano T., Hori R. Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J Biol Chem. 1992 Dec 5;267(34):24248–24252. [PubMed] [Google Scholar]
  47. Urbatsch I. L., Senior A. E. Effects of lipids on ATPase activity of purified Chinese hamster P-glycoprotein. Arch Biochem Biophys. 1995 Jan 10;316(1):135–140. doi: 10.1006/abbi.1995.1020. [DOI] [PubMed] [Google Scholar]
  48. Urbatsch I. L., al-Shawi M. K., Senior A. E. Characterization of the ATPase activity of purified Chinese hamster P-glycoprotein. Biochemistry. 1994 Jun 14;33(23):7069–7076. doi: 10.1021/bi00189a008. [DOI] [PubMed] [Google Scholar]
  49. Wolf D. C., Horwitz S. B. P-glycoprotein transports corticosterone and is photoaffinity-labeled by the steroid. Int J Cancer. 1992 Aug 19;52(1):141–146. doi: 10.1002/ijc.2910520125. [DOI] [PubMed] [Google Scholar]
  50. Yang C. P., Cohen D., Greenberger L. M., Hsu S. I., Horwitz S. B. Differential transport properties of two mdr gene products are distinguished by progesterone. J Biol Chem. 1990 Jun 25;265(18):10282–10288. [PubMed] [Google Scholar]
  51. Yang C. P., DePinho S. G., Greenberger L. M., Arceci R. J., Horwitz S. B. Progesterone interacts with P-glycoprotein in multidrug-resistant cells and in the endometrium of gravid uterus. J Biol Chem. 1989 Jan 15;264(2):782–788. [PubMed] [Google Scholar]
  52. Yusa K., Tsuruo T. Reversal mechanism of multidrug resistance by verapamil: direct binding of verapamil to P-glycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells. Cancer Res. 1989 Sep 15;49(18):5002–5006. [PubMed] [Google Scholar]
  53. al-Shawi M. K., Senior A. E. Characterization of the adenosine triphosphatase activity of Chinese hamster P-glycoprotein. J Biol Chem. 1993 Feb 25;268(6):4197–4206. [PubMed] [Google Scholar]
  54. al-Shawi M. K., Urbatsch I. L., Senior A. E. Covalent inhibitors of P-glycoprotein ATPase activity. J Biol Chem. 1994 Mar 25;269(12):8986–8992. [PubMed] [Google Scholar]
  55. van Kalken C. K., Broxterman H. J., Pinedo H. M., Feller N., Dekker H., Lankelma J., Giaccone G. Cortisol is transported by the multidrug resistance gene product P-glycoprotein. Br J Cancer. 1993 Feb;67(2):284–289. doi: 10.1038/bjc.1993.54. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES