Abstract
This study was designed to ascertain whether the extracellular loops of vasopressin/oxytocin receptors bind ligands and, if so, to locate the molecular determinants of this ligand-receptor interaction. Ligand-binding studies were employed using a rat liver V1a vasopressin receptor preparation and both peptide and non-peptide receptor ligands. Synthetic peptides corresponding to defined regions of the extracellular surface of the neurohypophysial hormone receptors recognized radioligands. These receptor mimetics inhibited the binding of radioligands to the V1a receptor with apparent affinities (pKi) ranging from 3.1 to 6.75. The same mimetics had no effects on the binding of angiotensin II to the rat AT1 receptor, indicating specificity for V1a receptor ligands. A mimetic peptide (DITYRFRGPDWL) of the first extracellular loop (ECII) of the V1a vasopressin receptor also inhibited vasopressin-stimulated, but not angiotensin II-stimulated, glycogen phosphorylase in isolated rat hepatocytes. In contrast, scrambled ECII mimetics displayed greatly reduced affinity for vasopressin. In addition, the role of peptide side-chain versus main-chain atoms in the binding of ligands by vasopressin receptors was addressed using retro-inverso peptide mimetics. Our findings indicate a precise orientation of the extracellular receptor surface (particularly the ECII domain) which facilitates the initial 'capture' of both peptide and non-peptide ligands. Moreover, the data indicate that the main-chain atoms of both a major binding-site determinant in the first extracellular loop of the receptor and the neurohypophysial hormones contribute significantly to the ligand-receptor interaction. These findings also suggest that soluble receptor-binding domains have therapeutic potential.
Full Text
The Full Text of this article is available as a PDF (432.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adachi M., Yang Y. Y., Trzeciak A., Furuichi Y., Miyamoto C. Identification of a domain of ETA receptor required for ligand binding. FEBS Lett. 1992 Oct 19;311(2):179–183. doi: 10.1016/0014-5793(92)81393-z. [DOI] [PubMed] [Google Scholar]
- Atassi M. Z., Manshouri T., Sakata S. Localization and synthesis of the hormone-binding regions of the human thyrotropin receptor. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3613–3617. doi: 10.1073/pnas.88.9.3613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldwin J. M. Structure and function of receptors coupled to G proteins. Curr Opin Cell Biol. 1994 Apr;6(2):180–190. doi: 10.1016/0955-0674(94)90134-1. [DOI] [PubMed] [Google Scholar]
- Beinborn M., Lee Y. M., McBride E. W., Quinn S. M., Kopin A. S. A single amino acid of the cholecystokinin-B/gastrin receptor determines specificity for non-peptide antagonists. Nature. 1993 Mar 25;362(6418):348–350. doi: 10.1038/362348a0. [DOI] [PubMed] [Google Scholar]
- Bichet D. G., Birnbaumer M., Lonergan M., Arthus M. F., Rosenthal W., Goodyer P., Nivet H., Benoit S., Giampietro P., Simonetti S. Nature and recurrence of AVPR2 mutations in X-linked nephrogenic diabetes insipidus. Am J Hum Genet. 1994 Aug;55(2):278–286. [PMC free article] [PubMed] [Google Scholar]
- Birnbaumer M., Gilbert S., Rosenthal W. An extracellular congenital nephrogenic diabetes insipidus mutation of the vasopressin receptor reduces cell surface expression, affinity for ligand, and coupling to the Gs/adenylyl cyclase system. Mol Endocrinol. 1994 Jul;8(7):886–894. doi: 10.1210/mend.8.7.7984150. [DOI] [PubMed] [Google Scholar]
- Birnbaumer M., Seibold A., Gilbert S., Ishido M., Barberis C., Antaramian A., Brabet P., Rosenthal W. Molecular cloning of the receptor for human antidiuretic hormone. Nature. 1992 May 28;357(6376):333–335. doi: 10.1038/357333a0. [DOI] [PubMed] [Google Scholar]
- Brady L., Dodson G. Drug design. Reflections on a peptide. Nature. 1994 Apr 21;368(6473):692–693. doi: 10.1038/368692a0. [DOI] [PubMed] [Google Scholar]
- Chini B., Mouillac B., Ala Y., Balestre M. N., Trumpp-Kallmeyer S., Hoflack J., Elands J., Hibert M., Manning M., Jard S. Tyr115 is the key residue for determining agonist selectivity in the V1a vasopressin receptor. EMBO J. 1995 May 15;14(10):2176–2182. doi: 10.1002/j.1460-2075.1995.tb07211.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dattatreyamurty B., Reichert L. E., Jr A synthetic peptide corresponding to amino acids 9-30 of the extracellular domain of the follitropin (FSH) receptor specifically binds FSH. Mol Cell Endocrinol. 1992 Sep;87(1-3):9–17. doi: 10.1016/0303-7207(92)90228-x. [DOI] [PubMed] [Google Scholar]
- Fong T. M., Cascieri M. A., Yu H., Bansal A., Swain C., Strader C. D. Amino-aromatic interaction between histidine 197 of the neurokinin-1 receptor and CP 96345. Nature. 1993 Mar 25;362(6418):350–353. doi: 10.1038/362350a0. [DOI] [PubMed] [Google Scholar]
- Fong T. M., Yu H., Huang R. R., Strader C. D. The extracellular domain of the neurokinin-1 receptor is required for high-affinity binding of peptides. Biochemistry. 1992 Dec 1;31(47):11806–11811. doi: 10.1021/bi00162a019. [DOI] [PubMed] [Google Scholar]
- Gerszten R. E., Chen J., Ishii M., Ishii K., Wang L., Nanevicz T., Turck C. W., Vu T. K., Coughlin S. R. Specificity of the thrombin receptor for agonist peptide is defined by its extracellular surface. Nature. 1994 Apr 14;368(6472):648–651. doi: 10.1038/368648a0. [DOI] [PubMed] [Google Scholar]
- Gether U., Johansen T. E., Snider R. M., Lowe J. A., 3rd, Nakanishi S., Schwartz T. W. Different binding epitopes on the NK1 receptor for substance P and non-peptide antagonist. Nature. 1993 Mar 25;362(6418):345–348. doi: 10.1038/362345a0. [DOI] [PubMed] [Google Scholar]
- Howl J., Ismail T., Strain A. J., Kirk C. J., Anderson D., Wheatley M. Characterization of the human liver vasopressin receptor. Profound differences between human and rat vasopressin-receptor-mediated responses suggest only a minor role for vasopressin in regulating human hepatic function. Biochem J. 1991 May 15;276(Pt 1):189–195. doi: 10.1042/bj2760189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howl J., Wang X., Kirk C. J., Wheatley M. Fluorescent and biotinylated linear peptides as selective bifunctional ligands for the V1a vasopressin receptor. Eur J Biochem. 1993 Apr 15;213(2):711–719. doi: 10.1111/j.1432-1033.1993.tb17811.x. [DOI] [PubMed] [Google Scholar]
- Howl J., Wheatley M. Molecular pharmacology of V1a vasopressin receptors. Gen Pharmacol. 1995 Oct;26(6):1143–1152. doi: 10.1016/0306-3623(95)00016-t. [DOI] [PubMed] [Google Scholar]
- Hébert C. A., Chuntharapai A., Smith M., Colby T., Kim J., Horuk R. Partial functional mapping of the human interleukin-8 type A receptor. Identification of a major ligand binding domain. J Biol Chem. 1993 Sep 5;268(25):18549–18553. [PubMed] [Google Scholar]
- Jameson B. A., McDonnell J. M., Marini J. C., Korngold R. A rationally designed CD4 analogue inhibits experimental allergic encephalomyelitis. Nature. 1994 Apr 21;368(6473):744–746. doi: 10.1038/368744a0. [DOI] [PubMed] [Google Scholar]
- Ji I. H., Ji T. H. Human choriogonadotropin binds to a lutropin receptor with essentially no N-terminal extension and stimulates cAMP synthesis. J Biol Chem. 1991 Jul 15;266(20):13076–13079. [PubMed] [Google Scholar]
- Kimura T., Tanizawa O., Mori K., Brownstein M. J., Okayama H. Structure and expression of a human oxytocin receptor. Nature. 1992 Apr 9;356(6369):526–529. doi: 10.1038/356526a0. [DOI] [PubMed] [Google Scholar]
- Kojro E., Eich P., Gimpl G., Fahrenholz F. Direct identification of an extracellular agonist binding site in the renal V2 vasopressin receptor. Biochemistry. 1993 Dec 14;32(49):13537–13544. doi: 10.1021/bi00212a020. [DOI] [PubMed] [Google Scholar]
- Kruszynski M., Lammek B., Manning M., Seto J., Haldar J., Sawyer W. H. [1-beta-Mercapto-beta,beta-cyclopentamethylenepropionic acid),2-(O-methyl)tyrosine ]argine-vasopressin and [1-beta-mercapto-beta,beta-cyclopentamethylenepropionic acid)]argine-vasopressine, two highly potent antagonists of the vasopressor response to arginine-vasopressin. J Med Chem. 1980 Apr;23(4):364–368. doi: 10.1021/jm00178a003. [DOI] [PubMed] [Google Scholar]
- Lolait S. J., O'Carroll A. M., McBride O. W., Konig M., Morel A., Brownstein M. J. Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature. 1992 May 28;357(6376):336–339. doi: 10.1038/357336a0. [DOI] [PubMed] [Google Scholar]
- Mahlmann S., Meyerhof W., Hausmann H., Heierhorst J., Schönrock C., Zwiers H., Lederis K., Richter D. Structure, function, and phylogeny of [Arg8]vasotocin receptors from teleost fish and toad. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1342–1345. doi: 10.1073/pnas.91.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michell R. H., Kirk C. J., Billah M. M. Hormonal stimulation of phosphatidylinositol breakdown with particular reference to the hepatic effects of vasopressin. Biochem Soc Trans. 1979 Oct;7(5):861–865. doi: 10.1042/bst0070861. [DOI] [PubMed] [Google Scholar]
- Morel A., O'Carroll A. M., Brownstein M. J., Lolait S. J. Molecular cloning and expression of a rat V1a arginine vasopressin receptor. Nature. 1992 Apr 9;356(6369):523–526. doi: 10.1038/356523a0. [DOI] [PubMed] [Google Scholar]
- Mouillac B., Chini B., Balestre M. N., Elands J., Trumpp-Kallmeyer S., Hoflack J., Hibert M., Jard S., Barberis C. The binding site of neuropeptide vasopressin V1a receptor. Evidence for a major localization within transmembrane regions. J Biol Chem. 1995 Oct 27;270(43):25771–25777. doi: 10.1074/jbc.270.43.25771. [DOI] [PubMed] [Google Scholar]
- Quehenberger O., Prossnitz E. R., Cavanagh S. L., Cochrane C. G., Ye R. D. Multiple domains of the N-formyl peptide receptor are required for high-affinity ligand binding. Construction and analysis of chimeric N-formyl peptide receptors. J Biol Chem. 1993 Aug 25;268(24):18167–18175. [PubMed] [Google Scholar]
- Radel S. J., Genco R. J., De Nardin E. Structural and functional characterization of the human formyl peptide receptor ligand-binding region. Infect Immun. 1994 May;62(5):1726–1732. doi: 10.1128/iai.62.5.1726-1732.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roche P. C., Ryan R. J., McCormick D. J. Identification of hormone-binding regions of the luteinizing hormone/human chorionic gonadotropin receptor using synthetic peptides. Endocrinology. 1992 Jul;131(1):268–274. doi: 10.1210/endo.131.1.1612004. [DOI] [PubMed] [Google Scholar]
- Serradeil-Le Gal C., Raufaste D., Marty E., Garcia C., Maffrand J. P., Le Fur G. Binding of [3H] SR 49059, a potent nonpeptide vasopressin V1a antagonist, to rat and human liver membranes. Biochem Biophys Res Commun. 1994 Feb 28;199(1):353–360. doi: 10.1006/bbrc.1994.1236. [DOI] [PubMed] [Google Scholar]
- Sharif M., Hanley M. R. Peptide receptors. Stepping up the pressure. Nature. 1992 May 28;357(6376):279–280. doi: 10.1038/357279a0. [DOI] [PubMed] [Google Scholar]
- Strader C. D., Fong T. M., Tota M. R., Underwood D., Dixon R. A. Structure and function of G protein-coupled receptors. Annu Rev Biochem. 1994;63:101–132. doi: 10.1146/annurev.bi.63.070194.000533. [DOI] [PubMed] [Google Scholar]
- Thibonnier M., Auzan C., Madhun Z., Wilkins P., Berti-Mattera L., Clauser E. Molecular cloning, sequencing, and functional expression of a cDNA encoding the human V1a vasopressin receptor. J Biol Chem. 1994 Feb 4;269(5):3304–3310. [PubMed] [Google Scholar]
- Tsai-Morris C. H., Buczko E., Wang W., Dufau M. L. Intronic nature of the rat luteinizing hormone receptor gene defines a soluble receptor subspecies with hormone binding activity. J Biol Chem. 1990 Nov 15;265(32):19385–19388. [PubMed] [Google Scholar]
- Wheatley M., Howl J., Morel A., Davies A. R. Homology between neurohypophyseal hormone receptors. Biochem J. 1993 Dec 1;296(Pt 2):519–519. doi: 10.1042/bj2960519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilton J. C., Williams D. E., Strain A. J., Parslow R. A., Chipman J. K., Coleman R. Purification of hepatocyte couplets by centrifugal elutriation. Hepatology. 1991 Jul;14(1):180–183. doi: 10.1002/hep.1840140129. [DOI] [PubMed] [Google Scholar]
- Yarbrough G. G., Taylor D. P. Cell receptors as drugs. Ligand binding domains of receptors as drugs: a potential new class of therapeutic agents. J R Coll Physicians Lond. 1991 Oct;25(4):309–311. [PMC free article] [PubMed] [Google Scholar]