Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jul 15;317(Pt 2):583–588. doi: 10.1042/bj3170583

Activation of protein kinase C by lysophosphatidic acid: dependence on composition of phospholipid vesicles.

J J Sando 1, O I Chertihin 1
PMCID: PMC1217526  PMID: 8713089

Abstract

Lysophosphatidic acid (LPA) has attracted recent attention as a major serum-derived regulator implicated in responses to vascular injury and inflammation, in tumour invasiveness and in neuronal signalling and remodelling. Although the possibility of a specific G-protein-coupled LPA receptor protein has been suggested, characterization of such a receptor is lacking. Since LPA can activate protein kinase C (PKC) pathways in many cells and PKC activators mimic many LPA effects, the possibility of more direct LPA effects on PKC was investigated. Phosphatidylcholine (PC)/phosphatidylserine (PS)/diacylglycerol (DAG) lipid vesicles of defined acyl chain composition were used to activate the enzyme. At total concentrations of saturated PC/PS + DAG vesicles (2-3 mM) that provided maximal PKC activation, 1-10 mol % [18:1]-LPA led to a further approx. 2-fold activation of PKC alpha. At lower lipid concentrations, a greater increase was observed with LPA concentrations up to 16-20 mol %. Higher concentrations of LPA were inhibitory. The LPA activation of PKC was dependent on the presence of DAG, PS and Ca2+. [18:1]-Lysophosphatidylcholine produced similar PKC activation in PC/PS/DAG vesicles. [14:0]-LPA was less effective, and longer-chain saturated lysolipids were ineffective. In unsaturated PC/PS vesicles, very little to no effect of LPA was discernable. These results suggest that physiologically or pathologically relevant concentrations of LPA can contribute to PKC activation depending on the composition of the lipid membrane. We hypothesize that LPA may affect the formation of lipid domains that are recognized by the enzyme.

Full Text

The Full Text of this article is available as a PDF (638.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed S., Lee J., Kozma R., Best A., Monfries C., Lim L. A novel functional target for tumor-promoting phorbol esters and lysophosphatidic acid. The p21rac-GTPase activating protein n-chimaerin. J Biol Chem. 1993 May 25;268(15):10709–10712. [PubMed] [Google Scholar]
  2. Asaoka Y., Oka M., Yoshida K., Sasaki Y., Nishizuka Y. Role of lysophosphatidylcholine in T-lymphocyte activation: involvement of phospholipase A2 in signal transduction through protein kinase C. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6447–6451. doi: 10.1073/pnas.89.14.6447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Asaoka Y., Yoshida K., Sasaki Y., Nishizuka Y. Potential role of phospholipase A2 in HL-60 cell differentiation to macrophages induced by protein kinase C activation. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4917–4921. doi: 10.1073/pnas.90.11.4917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bolen E. J., Sando J. J. Effect of phospholipid unsaturation on protein kinase C activation. Biochemistry. 1992 Jun 30;31(25):5945–5951. doi: 10.1021/bi00140a034. [DOI] [PubMed] [Google Scholar]
  5. Fernhout B. J., Dijcks F. A., Moolenaar W. H., Ruigt G. S. Lysophosphatidic acid induces inward currents in Xenopus laevis oocytes; evidence for an extracellular site of action. Eur J Pharmacol. 1992 Mar 24;213(2):313–315. doi: 10.1016/0014-2999(92)90698-4. [DOI] [PubMed] [Google Scholar]
  6. Fortes P. A., Ellory J. C., Lew V. L. Suramin: a potent ATPase inhibitor which acts on the inside surface of the sodium pump. Biochim Biophys Acta. 1973 Aug 22;318(2):262–272. doi: 10.1016/0005-2736(73)90119-3. [DOI] [PubMed] [Google Scholar]
  7. Gilmore T., Martin G. S. Phorbol ester and diacylglycerol induce protein phosphorylation at tyrosine. Nature. 1983 Dec 1;306(5942):487–490. doi: 10.1038/306487a0. [DOI] [PubMed] [Google Scholar]
  8. Hensey C. E., Boscoboinik D., Azzi A. Suramin, an anti-cancer drug, inhibits protein kinase C and induces differentiation in neuroblastoma cell clone NB2A. FEBS Lett. 1989 Nov 20;258(1):156–158. doi: 10.1016/0014-5793(89)81639-4. [DOI] [PubMed] [Google Scholar]
  9. Jalink K., van Corven E. J., Moolenaar W. H. Lysophosphatidic acid, but not phosphatidic acid, is a potent Ca2(+)-mobilizing stimulus for fibroblasts. Evidence for an extracellular site of action. J Biol Chem. 1990 Jul 25;265(21):12232–12239. [PubMed] [Google Scholar]
  10. Katada T., Gilman A. G., Watanabe Y., Bauer S., Jakobs K. H. Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem. 1985 Sep 2;151(2):431–437. doi: 10.1111/j.1432-1033.1985.tb09120.x. [DOI] [PubMed] [Google Scholar]
  11. Kugiyama K., Ohgushi M., Sugiyama S., Murohara T., Fukunaga K., Miyamoto E., Yasue H. Lysophosphatidylcholine inhibits surface receptor-mediated intracellular signals in endothelial cells by a pathway involving protein kinase C activation. Circ Res. 1992 Dec;71(6):1422–1428. doi: 10.1161/01.res.71.6.1422. [DOI] [PubMed] [Google Scholar]
  12. Mahoney C. W., Azzi A., Huang K. P. Effects of suramin, an anti-human immunodeficiency virus reverse transcriptase agent, on protein kinase C. Differential activation and inhibition of protein kinase C isozymes. J Biol Chem. 1990 Apr 5;265(10):5424–5428. [PubMed] [Google Scholar]
  13. Marquardt D. L., Walker L. L. Lysophosphatidylcholine induces mast cell secretion and protein kinase C activation. J Allergy Clin Immunol. 1991 Nov;88(5):721–730. doi: 10.1016/0091-6749(91)90178-q. [DOI] [PubMed] [Google Scholar]
  14. Maurer M. C., Grisham C. M., Sando J. J. Activation and inhibition of protein kinase C isozymes alpha and beta by Gd3+. Arch Biochem Biophys. 1992 Nov 1;298(2):561–568. doi: 10.1016/0003-9861(92)90450-b. [DOI] [PubMed] [Google Scholar]
  15. Moolenaar W. H. LPA: a novel lipid mediator with diverse biological actions. Trends Cell Biol. 1994 Jun;4(6):213–219. doi: 10.1016/0962-8924(94)90144-9. [DOI] [PubMed] [Google Scholar]
  16. Nakamura S., Nishizuka Y. Lipid mediators and protein kinase C activation for the intracellular signaling network. J Biochem. 1994 Jun;115(6):1029–1034. doi: 10.1093/oxfordjournals.jbchem.a124451. [DOI] [PubMed] [Google Scholar]
  17. Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
  18. Oishi K., Raynor R. L., Charp P. A., Kuo J. F. Regulation of protein kinase C by lysophospholipids. Potential role in signal transduction. J Biol Chem. 1988 May 15;263(14):6865–6871. [PubMed] [Google Scholar]
  19. Orr J. W., Newton A. C. Interaction of protein kinase C with phosphatidylserine. 1. Cooperativity in lipid binding. Biochemistry. 1992 May 19;31(19):4661–4667. doi: 10.1021/bi00134a018. [DOI] [PubMed] [Google Scholar]
  20. Plevin R., MacNulty E. E., Palmer S., Wakelam M. J. Differences in the regulation of endothelin-1- and lysophosphatidic-acid-stimulated Ins(1,4,5)P3 formation in rat-1 fibroblasts. Biochem J. 1991 Dec 15;280(Pt 3):609–615. doi: 10.1042/bj2800609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pyne N. J., Freissmuth M., Palmer S. Phosphorylation of the spliced variant forms of the recombinant stimulatory guanine-nucleotide-binding regulatory protein (Gs alpha) by protein kinase C. Biochem J. 1992 Jul 1;285(Pt 1):333–338. doi: 10.1042/bj2850333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Richardson A. F., Sando J. J. Rapid tyrosine phosphorylation of an 85,000 M(r) protein after phorbol ester stimulation of EL4 thymoma cells. Cell Signal. 1995 Jan;7(1):17–30. doi: 10.1016/0898-6568(94)00068-m. [DOI] [PubMed] [Google Scholar]
  23. Rossomando A. J., Sanghera J. S., Marsden L. A., Weber M. J., Pelech S. L., Sturgill T. W. Biochemical characterization of a family of serine/threonine protein kinases regulated by tyrosine and serine/threonine phosphorylations. J Biol Chem. 1991 Oct 25;266(30):20270–20275. [PubMed] [Google Scholar]
  24. Sando J. J., Maurer M. C., Bolen E. J., Grisham C. M. Role of cofactors in protein kinase C activation. Cell Signal. 1992 Nov;4(6):595–609. doi: 10.1016/0898-6568(92)90041-6. [DOI] [PubMed] [Google Scholar]
  25. Sando J. J., Young M. C. Identification of high-affinity phorbol ester receptor in cytosol of EL4 thymoma cells: requirement for calcium, magnesium, and phospholipids. Proc Natl Acad Sci U S A. 1983 May;80(9):2642–2646. doi: 10.1073/pnas.80.9.2642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sasaki Y., Asaoka Y., Nishizuka Y. Potentiation of diacylglycerol-induced activation of protein kinase C by lysophospholipids. Subspecies difference. FEBS Lett. 1993 Mar 29;320(1):47–51. doi: 10.1016/0014-5793(93)81655-j. [DOI] [PubMed] [Google Scholar]
  27. Seckl M. J., Seufferlein T., Rozengurt E. Lysophosphatidic acid-depleted serum, hepatocyte growth factor and stem cell growth factor stimulate colony growth of small cell lung cancer cells through a calcium-independent pathway. Cancer Res. 1994 Dec 1;54(23):6143–6147. [PubMed] [Google Scholar]
  28. Sinnett-Smith J., Zachary I., Valverde A. M., Rozengurt E. Bombesin stimulation of p125 focal adhesion kinase tyrosine phosphorylation. Role of protein kinase C, Ca2+ mobilization, and the actin cytoskeleton. J Biol Chem. 1993 Jul 5;268(19):14261–14268. [PubMed] [Google Scholar]
  29. Strassheim D., Malbon C. C. Phosphorylation of Gi alpha 2 attenuates inhibitory adenylyl cyclase in neuroblastoma/glioma hybrid (NG-108-15) cells. J Biol Chem. 1994 May 13;269(19):14307–14313. [PubMed] [Google Scholar]
  30. Yang L., Glaser M. Membrane domains containing phosphatidylserine and substrate can be important for the activation of protein kinase C. Biochemistry. 1995 Feb 7;34(5):1500–1506. doi: 10.1021/bi00005a005. [DOI] [PubMed] [Google Scholar]
  31. Yatomi Y., Arata Y., Tada S., Kume S., Ui M. Phosphorylation of the inhibitory guanine-nucleotide-binding protein as a possible mechanism of inhibition by protein kinase C of agonist-induced Ca2+ mobilization in human platelet. Eur J Biochem. 1992 May 1;205(3):1003–1009. doi: 10.1111/j.1432-1033.1992.tb16867.x. [DOI] [PubMed] [Google Scholar]
  32. van Corven E. J., Groenink A., Jalink K., Eichholtz T., Moolenaar W. H. Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. Cell. 1989 Oct 6;59(1):45–54. doi: 10.1016/0092-8674(89)90868-4. [DOI] [PubMed] [Google Scholar]
  33. van Corven E. J., van Rijswijk A., Jalink K., van der Bend R. L., van Blitterswijk W. J., Moolenaar W. H. Mitogenic action of lysophosphatidic acid and phosphatidic acid on fibroblasts. Dependence on acyl-chain length and inhibition by suramin. Biochem J. 1992 Jan 1;281(Pt 1):163–169. doi: 10.1042/bj2810163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. van der Bend R. L., Brunner J., Jalink K., van Corven E. J., Moolenaar W. H., van Blitterswijk W. J. Identification of a putative membrane receptor for the bioactive phospholipid, lysophosphatidic acid. EMBO J. 1992 Jul;11(7):2495–2501. doi: 10.1002/j.1460-2075.1992.tb05314.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES