Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jul 15;317(Pt 2):589–597. doi: 10.1042/bj3170589

Synthesis of non-hydroxy-galactosylceramides and galactosyldiglycerides by hydroxy-ceramide galactosyltransferase.

P van der Bijl 1, G J Strous 1, M Lopes-Cardozo 1, J Thomas-Oates 1, G van Meer 1
PMCID: PMC1217527  PMID: 8713090

Abstract

Galactosylceramide (GalCer) is the major glycolipid in brain. In order to characterize the activity of brain UDPgalactose: ceramide galactosyltransferase (CGalT), it has been stably expressed in CGalT-negative Chinese hamster ovary (CHO) cells. After fractionation of transfected cells, CHO-CGT, on sucrose gradients, the activity resides at the density of endoplasmic reticulum and not of Golgi. A lipid chromatogram from CHO-CGT cells revealed two new iodine-staining spots identified as GalCer, since they comigrate with GalCer standards, can be metabolically labelled with [3H]galactose, are recognized by anti-GalCer antibodies, and are resistant to alkaline hydrolysis. A third [3H]galactose lipid was identified as galactosyldiglyceride. In the homogenate CGalT displays a 25-fold preference for hydroxy fatty acid-containing ceramides. Remarkably, endogenous GalCer of transfected cells contains exclusively non-hydroxy fatty acids: fast atom bombardment and collision-induced dissociation mass spectrometric analysis revealed mainly C16:0 in the lower GalCer band on TLC and mainly C22:0 and C24:0 in the upper band. Our results suggest that CGalT galactosylates both hydroxy- and non-hydroxy fatty acid-containing ceramides and diglycerides, depending on their local availability. Thus, CGalT alone may be responsible for the synthesis of hydroxy- and non-hydroxy-GalCer, and galactosyldiglyceride in myelin.

Full Text

The Full Text of this article is available as a PDF (546.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Bansal R., Pfeiffer S. E. Regulated galactolipid synthesis and cell surface expression in Schwann cell line D6P2T. J Neurochem. 1987 Dec;49(6):1902–1911. doi: 10.1111/j.1471-4159.1987.tb02453.x. [DOI] [PubMed] [Google Scholar]
  3. Bansal R., Warrington A. E., Gard A. L., Ranscht B., Pfeiffer S. E. Multiple and novel specificities of monoclonal antibodies O1, O4, and R-mAb used in the analysis of oligodendrocyte development. J Neurosci Res. 1989 Dec;24(4):548–557. doi: 10.1002/jnr.490240413. [DOI] [PubMed] [Google Scholar]
  4. Basu M., De T., Das K. K., Kyle J. W., Chon H. C., Schaeper R. J., Basu S. Glycolipids. Methods Enzymol. 1987;138:575–607. doi: 10.1016/0076-6879(87)38053-x. [DOI] [PubMed] [Google Scholar]
  5. Basu S., Schultz A. M., Basu M., Roseman S. Enzymatic synthesis of galactocerebroside by a galactosyltransferase from embryonic chicken brain. J Biol Chem. 1971 Jul 10;246(13):4272–4279. [PubMed] [Google Scholar]
  6. Brändli A. W., Hansson G. C., Rodriguez-Boulan E., Simons K. A polarized epithelial cell mutant deficient in translocation of UDP-galactose into the Golgi complex. J Biol Chem. 1988 Nov 5;263(31):16283–16290. [PubMed] [Google Scholar]
  7. Burger K. N., van der Bijl P., van Meer G. Topology of sphingolipid galactosyltransferases in ER and Golgi: transbilayer movement of monohexosyl sphingolipids is required for higher glycosphingolipid biosynthesis. J Cell Biol. 1996 Apr;133(1):15–28. doi: 10.1083/jcb.133.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. CARTER H. E., JOHNSON P., WEBER E. J. GLYCOLIPIDS. Annu Rev Biochem. 1965;34:109–142. doi: 10.1146/annurev.bi.34.070165.000545. [DOI] [PubMed] [Google Scholar]
  9. De Haas C. G., Lopes-Cardozo M. Hydroxy- and non-hydroxy-galactolipids in developing rat CNS. Int J Dev Neurosci. 1995 Aug;13(5):447–454. doi: 10.1016/0736-5748(95)00006-3. [DOI] [PubMed] [Google Scholar]
  10. Deshmukh D. S., Inoue T., Pieringer R. A. The association of the galactosyl diglycerides of brain with myelination. II. The inability of the myelin-deficient mutant, jimpy mouse, to synthesize galactosyl diglycerides effectively. J Biol Chem. 1971 Sep 25;246(18):5695–5699. [PubMed] [Google Scholar]
  11. Gadella B. M., Gadella T. W., Jr, Colenbrander B., van Golde L. M., Lopes-Cardozo M. Visualization and quantification of glycolipid polarity dynamics in the plasma membrane of the mammalian spermatozoon. J Cell Sci. 1994 Aug;107(Pt 8):2151–2163. doi: 10.1242/jcs.107.8.2151. [DOI] [PubMed] [Google Scholar]
  12. Garbay B., Cassagne C. Expression of the ceramide galactosyltransferase gene during myelination of the mouse nervous system. Comparison with the genes encoding myelin basic proteins, choline kinase and CTP:phosphocholine cytidylyltransferase. Brain Res Dev Brain Res. 1994 Nov 18;83(1):119–124. doi: 10.1016/0165-3806(94)90185-6. [DOI] [PubMed] [Google Scholar]
  13. Hansson G. C., Simons K., van Meer G. Two strains of the Madin-Darby canine kidney (MDCK) cell line have distinct glycosphingolipid compositions. EMBO J. 1986 Mar;5(3):483–489. doi: 10.1002/j.1460-2075.1986.tb04237.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Inoue T., Dehmukh D. S., Pieringer R. A. The association of the galactosyl diglycerides of brain with myelination. I. Changes in the concentration of monogalactosyl diglyceride in the somal and myelin fractions of brain of rats during development. J Biol Chem. 1971 Sep 25;246(18):5688–5694. [PubMed] [Google Scholar]
  15. Jeckel D., Karrenbauer A., Burger K. N., van Meer G., Wieland F. Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol. 1992 Apr;117(2):259–267. doi: 10.1083/jcb.117.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Karlsson K. A., Samuelsson B. E., Steen G. O. The sphingolipid composition of bovine kidney cortex, medulla and papilla. Biochim Biophys Acta. 1973 Sep 25;316(3):317–335. doi: 10.1016/0005-2760(73)90072-6. [DOI] [PubMed] [Google Scholar]
  17. Kishimoto Y., Akanuma H., Singh I. Fatty acid alpha-hydroxylation and its relation to myelination. Mol Cell Biochem. 1979 Dec 14;28(1-3):93–105. doi: 10.1007/BF00223361. [DOI] [PubMed] [Google Scholar]
  18. Koul O., Singh I., Jungalwala F. B. Synthesis and transport of cerebrosides and sulfatides in rat brain during development. J Neurochem. 1988 Feb;50(2):580–588. doi: 10.1111/j.1471-4159.1988.tb02950.x. [DOI] [PubMed] [Google Scholar]
  19. Ladenson R. C., Monsey J. D., Allin J., Silbert D. F. Utilization of exogenously supplied sphingosine analogues for sphingolipid biosynthesis in Chinese hamster ovary and mouse LM cell fibroblasts. J Biol Chem. 1993 Apr 15;268(11):7650–7659. [PubMed] [Google Scholar]
  20. Magnani J. L., Spitalnik S. L., Ginsburg V. Antibodies against cell surface carbohydrates: determination of antigen structure. Methods Enzymol. 1987;138:195–207. doi: 10.1016/0076-6879(87)38016-4. [DOI] [PubMed] [Google Scholar]
  21. Marggraf W. D., Kanfer J. N. The phosphorylcholine acceptor in the phosphatidylcholine:ceramide cholinephosphotransferase reaction. Is the enzyme a transferase or a hydrolase? Biochim Biophys Acta. 1984 May 11;793(3):346–353. doi: 10.1016/0005-2760(84)90248-0. [DOI] [PubMed] [Google Scholar]
  22. McAlarney T., Apostolski S., Lederman S., Latov N. Characteristics of HIV-1 gp120 glycoprotein binding to glycolipids. J Neurosci Res. 1994 Mar 1;37(4):453–460. doi: 10.1002/jnr.490370404. [DOI] [PubMed] [Google Scholar]
  23. Morell P., Radin N. S. Synthesis of cerebroside by brain from uridine diphosphate galactose and ceramide containing hydroxy fatty acid. Biochemistry. 1969 Feb;8(2):506–512. doi: 10.1021/bi00830a008. [DOI] [PubMed] [Google Scholar]
  24. Natomi H., Saitoh T., Sugano K., Iwamori M., Fukayama M., Nagai Y. Systematic analysis of glycosphingolipids in the human gastrointestinal tract: enrichment of sulfatides with hydroxylated longer-chain fatty acids in the gastric and duodenal mucosa. Lipids. 1993 Aug;28(8):737–742. doi: 10.1007/BF02535996. [DOI] [PubMed] [Google Scholar]
  25. Neskovic N. M., Roussel G., Nussbaum J. L. UDPgalactose:ceramide galactosyltransferase of rat brain: a new method of purification and production of specific antibodies. J Neurochem. 1986 Nov;47(5):1412–1418. doi: 10.1111/j.1471-4159.1986.tb00773.x. [DOI] [PubMed] [Google Scholar]
  26. Nilsson T., Warren G. Retention and retrieval in the endoplasmic reticulum and the Golgi apparatus. Curr Opin Cell Biol. 1994 Aug;6(4):517–521. doi: 10.1016/0955-0674(94)90070-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nimura Y., Isihizuka I. Glycosphingolipid composition of a renal cell line (MDCK) and its ouabain-resistant mutant. J Biochem. 1986 Oct;100(4):825–835. doi: 10.1093/oxfordjournals.jbchem.a121794. [DOI] [PubMed] [Google Scholar]
  28. Nonaka G., Kishimoto Y. Levels of cerebrosides, sulfatides, and galactosyl diglycerides in different regions of rat brain. Change during maturation and distribution in subcellular fractions of gray and white matter of sheep brain. Biochim Biophys Acta. 1979 Mar 29;572(3):432–441. doi: 10.1016/0005-2760(79)90150-4. [DOI] [PubMed] [Google Scholar]
  29. Radin N. S. Glucosylceramide in the nervous system--a mini-review. Neurochem Res. 1994 May;19(5):533–540. doi: 10.1007/BF00971327. [DOI] [PubMed] [Google Scholar]
  30. Ranscht B., Clapshaw P. A., Price J., Noble M., Seifert W. Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2709–2713. doi: 10.1073/pnas.79.8.2709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sato C., Black J. A., Yu R. K. Subcellular distribution of UDP-galactose:ceramide galactosyltransferase in rat brain oligodendroglia. J Neurochem. 1988 Jun;50(6):1887–1893. doi: 10.1111/j.1471-4159.1988.tb02493.x. [DOI] [PubMed] [Google Scholar]
  32. Schaeren-Wiemers N., Schaefer C., Valenzuela D. M., Yancopoulos G. D., Schwab M. E. Identification of new oligodendrocyte- and myelin-specific genes by a differential screening approach. J Neurochem. 1995 Jul;65(1):10–22. doi: 10.1046/j.1471-4159.1995.65010010.x. [DOI] [PubMed] [Google Scholar]
  33. Schaeren-Wiemers N., van der Bijl P., Schwab M. E. The UDP-galactose:ceramide galactosyltransferase: expression pattern in oligodendrocytes and Schwann cells during myelination and substrate preference for hydroxyceramide. J Neurochem. 1995 Nov;65(5):2267–2278. doi: 10.1046/j.1471-4159.1995.65052267.x. [DOI] [PubMed] [Google Scholar]
  34. Schmidt-Schultz T., Althaus H. H. Monogalactosyl diglyceride, a marker for myelination, activates oligodendroglial protein kinase C. J Neurochem. 1994 Apr;62(4):1578–1585. doi: 10.1046/j.1471-4159.1994.62041578.x. [DOI] [PubMed] [Google Scholar]
  35. Schulte S., Stoffel W. Ceramide UDPgalactosyltransferase from myelinating rat brain: purification, cloning, and expression. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10265–10269. doi: 10.1073/pnas.90.21.10265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Simons K., van Meer G. Lipid sorting in epithelial cells. Biochemistry. 1988 Aug 23;27(17):6197–6202. doi: 10.1021/bi00417a001. [DOI] [PubMed] [Google Scholar]
  37. Sommer I., Schachner M. Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev Biol. 1981 Apr 30;83(2):311–327. doi: 10.1016/0012-1606(81)90477-2. [DOI] [PubMed] [Google Scholar]
  38. Stahl N., Jurevics H., Morell P., Suzuki K., Popko B. Isolation, characterization, and expression of cDNA clones that encode rat UDP-galactose: ceramide galactosyltransferase. J Neurosci Res. 1994 Jun 1;38(2):234–242. doi: 10.1002/jnr.490380214. [DOI] [PubMed] [Google Scholar]
  39. Strous G. J., van Kerkhof P., van Meer G., Rijnboutt S., Stoorvogel W. Differential effects of brefeldin A on transport of secretory and lysosomal proteins. J Biol Chem. 1993 Feb 5;268(4):2341–2347. [PubMed] [Google Scholar]
  40. Vos J. P., Lopes-Cardozo M., Gadella B. M. Metabolic and functional aspects of sulfogalactolipids. Biochim Biophys Acta. 1994 Mar 3;1211(2):125–149. doi: 10.1016/0005-2760(94)90262-3. [DOI] [PubMed] [Google Scholar]
  41. Warnock D. E., Lutz M. S., Blackburn W. A., Young W. W., Jr, Baenziger J. U. Transport of newly synthesized glucosylceramide to the plasma membrane by a non-Golgi pathway. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2708–2712. doi: 10.1073/pnas.91.7.2708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. de Lederkremer R. M., Lima C., Ramirez M. I., Ferguson M. A., Homans S. W., Thomas-Oates J. Complete structure of the glycan of lipopeptidophosphoglycan from Trypanosoma cruzi Epimastigotes. J Biol Chem. 1991 Dec 15;266(35):23670–23675. [PubMed] [Google Scholar]
  43. van Helvoort A., van't Hof W., Ritsema T., Sandra A., van Meer G. Conversion of diacylglycerol to phosphatidylcholine on the basolateral surface of epithelial (Madin-Darby canine kidney) cells. Evidence for the reverse action of a sphingomyelin synthase. J Biol Chem. 1994 Jan 21;269(3):1763–1769. [PubMed] [Google Scholar]
  44. van der Bijl P., Lopes-Cardozo M., van Meer G. Sorting of newly synthesized galactosphingolipids to the two surface domains of epithelial cells. J Cell Biol. 1996 Mar;132(5):813–821. doi: 10.1083/jcb.132.5.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. van der Pal R. H., Vos J. P., van Golde L. M., Lopes-Cardozo M. A rapid procedure for the preparation of oligodendrocyte-enriched cultures from rat spinal cord. Biochim Biophys Acta. 1990 Feb 19;1051(2):159–165. doi: 10.1016/0167-4889(90)90188-j. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES