Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Aug 1;317(Pt 3):659–665. doi: 10.1042/bj3170659

Intracellular dissociation and reassembly of prolyl 4-hydroxylase:the alpha-subunits associated with the immunoglobulin-heavy-chain binding protein (BiP) allowing reassembly with the beta-subunit.

D C John 1, N J Bulleid 1
PMCID: PMC1217537  PMID: 8760347

Abstract

Prolyl 4-hydroxylase (P4-H) consists of two distinct polypeptides; the catalytically more important alpha-subunit and the beta-subunit, which is identical to the multifunctional enzyme protein disulphide isomerase. The enzyme appears to be assembled in vivo into an alpha 2 beta 2 tetramer from newly synthesized alpha-subunits associating with an endogenous pool of beta-subunits. Using a cell-free system, we have shown previously that enzyme assembly is redox-dependent and that assembled alpha-subunits are intramolecularly disulphide-bonded [John and Bulleid (1994) Biochemistry 33, 14018-14025]. Here we have studied this assembly process within intact cells by expressing both subunits in COS-1 cells. Newly synthesized alpha-subunits were shown to assemble with the beta-subunit, to form insoluble aggregates, or to remain soluble but not associate with the beta-subunit. Treatment of cells with dithiothreitol (DTT) led to dissociation of P4-H into subunits and on removal of DTT the enzyme reassembled. This reassembly was ATP-dependent, suggesting an interaction with an ATP-dependent chaperone. This was confirmed when immunoglobulin-heavy-chain binding protein (BiP) and alpha-subunits were co-immunoprecipitated with antibodies against the alpha-subunit and BiP, respectively. These results indicate that unassembled alpha-subunits are maintained in an assembly-competent form by interacting with the molecular chaperone BiP.

Full Text

The Full Text of this article is available as a PDF (349.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berg R. A., Kao W. W., Kedersha N. L. The assembly of tetrameric prolyl hydroxylase in tendon fibroblasts from newly synthesized alpha-subunits and from preformed cross-reacting protein. Biochem J. 1980 Sep 1;189(3):491–499. doi: 10.1042/bj1890491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berg R. A., Prockop D. J. The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen. Biochem Biophys Res Commun. 1973 May 1;52(1):115–120. doi: 10.1016/0006-291x(73)90961-3. [DOI] [PubMed] [Google Scholar]
  3. Freedman R. B., Hirst T. R., Tuite M. F. Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci. 1994 Aug;19(8):331–336. doi: 10.1016/0968-0004(94)90072-8. [DOI] [PubMed] [Google Scholar]
  4. Gaut J. R., Hendershot L. M. Mutations within the nucleotide binding site of immunoglobulin-binding protein inhibit ATPase activity and interfere with release of immunoglobulin heavy chain. J Biol Chem. 1993 Apr 5;268(10):7248–7255. [PubMed] [Google Scholar]
  5. Gething M. J., McCammon K., Sambrook J. Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell. 1986 Sep 12;46(6):939–950. doi: 10.1016/0092-8674(86)90076-0. [DOI] [PubMed] [Google Scholar]
  6. Hammond C., Helenius A. A chaperone with a sweet tooth. Curr Biol. 1993 Dec 1;3(12):884–886. doi: 10.1016/0960-9822(93)90226-e. [DOI] [PubMed] [Google Scholar]
  7. John D. C., Bulleid N. J. Prolyl 4-hydroxylase: defective assembly of alpha-subunit mutants indicates that assembled alpha-subunits are intramolecularly disulfide bonded. Biochemistry. 1994 Nov 29;33(47):14018–14025. doi: 10.1021/bi00251a009. [DOI] [PubMed] [Google Scholar]
  8. John D. C., Grant M. E., Bulleid N. J. Cell-free synthesis and assembly of prolyl 4-hydroxylase: the role of the beta-subunit (PDI) in preventing misfolding and aggregation of the alpha-subunit. EMBO J. 1993 Apr;12(4):1587–1595. doi: 10.1002/j.1460-2075.1993.tb05803.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Knittler M. R., Haas I. G. Interaction of BiP with newly synthesized immunoglobulin light chain molecules: cycles of sequential binding and release. EMBO J. 1992 Apr;11(4):1573–1581. doi: 10.1002/j.1460-2075.1992.tb05202.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Koivu J., Myllylä R. Protein disulfide-isomerase retains procollagen prolyl 4-hydroxylase structure in its native conformation. Biochemistry. 1986 Oct 7;25(20):5982–5986. doi: 10.1021/bi00368a022. [DOI] [PubMed] [Google Scholar]
  11. Kuznetsov G., Chen L. B., Nigam S. K. Several endoplasmic reticulum stress proteins, including ERp72, interact with thyroglobulin during its maturation. J Biol Chem. 1994 Sep 16;269(37):22990–22995. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Lamberg A., Pihlajaniemi T., Kivirikko K. I. Site-directed mutagenesis of the alpha subunit of human prolyl 4-hydroxylase. Identification of three histidine residues critical for catalytic activity. J Biol Chem. 1995 Apr 28;270(17):9926–9931. doi: 10.1074/jbc.270.17.9926. [DOI] [PubMed] [Google Scholar]
  14. Myllylä R., Kaska D. D., Kivirikko K. I. The catalytic mechanism of the hydroxylation reaction of peptidyl proline and lysine does not require protein disulphide-isomerase activity. Biochem J. 1989 Oct 15;263(2):609–611. doi: 10.1042/bj2630609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nietfeld J. J., Van der Kraan I., Kemp A. Dissociation and reassociation of prolyl 4-hydroxylase subunits after cross-linking of monomers. Biochim Biophys Acta. 1981 Sep 15;661(1):21–27. doi: 10.1016/0005-2744(81)90078-4. [DOI] [PubMed] [Google Scholar]
  16. Tuderman L., Kuutti E. R., Kivirikko K. I. Radiommunoassay for human and chick prolyl hydroxylases. Eur J Biochem. 1975 Dec 15;60(2):399–405. doi: 10.1111/j.1432-1033.1975.tb21016.x. [DOI] [PubMed] [Google Scholar]
  17. Tuderman L., Oikarinen A., Kivirikko K. I. Tetramers and monomers of prolyl hydroxylase in isolated chick-embryo tendon cells. The association of inactive monomers to active tetramers and a preliminary characterization of the intracellular monomer-size protein. Eur J Biochem. 1977 Sep;78(2):547–556. doi: 10.1111/j.1432-1033.1977.tb11768.x. [DOI] [PubMed] [Google Scholar]
  18. Vuori K., Pihlajaniemi T., Marttila M., Kivirikko K. I. Characterization of the human prolyl 4-hydroxylase tetramer and its multifunctional protein disulfide-isomerase subunit synthesized in a baculovirus expression system. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7467–7470. doi: 10.1073/pnas.89.16.7467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vuori K., Pihlajaniemi T., Myllylä R., Kivirikko K. I. Site-directed mutagenesis of human protein disulphide isomerase: effect on the assembly, activity and endoplasmic reticulum retention of human prolyl 4-hydroxylase in Spodoptera frugiperda insect cells. EMBO J. 1992 Nov;11(11):4213–4217. doi: 10.1002/j.1460-2075.1992.tb05515.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wetterau J. R., Combs K. A., McLean L. R., Spinner S. N., Aggerbeck L. P. Protein disulfide isomerase appears necessary to maintain the catalytically active structure of the microsomal triglyceride transfer protein. Biochemistry. 1991 Oct 8;30(40):9728–9735. doi: 10.1021/bi00104a023. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES