Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Aug 1;317(Pt 3):763–769. doi: 10.1042/bj3170763

Cytokeratin 8 released by breast carcinoma cells in vitro binds plasminogen and tissue-type plasminogen activator and promotes plasminogen activation.

T A Hembrough 1, K R Kralovich 1, L Li 1, S L Gonias 1
PMCID: PMC1217550  PMID: 8760360

Abstract

Cell-surface activation of plasminogen may be important in diseases that involve cellular migration, including atherosclerosis and tumour invasion/metastasis. Cytokeratin 8 (CK 8) has been identified as a plasminogen-binding protein expressed on the external surfaces of hepatocytes and breast carcinoma cells [Hembrough, Vasudevan, Allietta, Glass and Gonias (1995) J. Cell Sci. 108, 1071-1082]. In this investigation, we demonstrate that a soluble form of CK 8 is released into the culture medium of breast cancer cell lines. The released CK 8 is in the form of variably sized polymers that bind plasminogen and promote the activation of [Glu1]plasminogen and [Lys78]plasminogen by single-chain tissue-type plasminogen activator (sct-PA). To assess the mechanism by which CK 8 promotes plasminogen activation, CK 8 was purified from rat hepatocytes and immobilized in microtitre plates. Immobilized CK 8 bound 125I-plasminogen and 125I-sct-PA in a specific and saturable manner. The KDs were 160 +/- 40 nM and 250 +/- 48 nM, respectively. Activation of plasminogen bound to immobilized CK 8 was accelerated compared with plasminogen in solution, as determined using a coupled-substrate fluorescence assay and SDS/PAGE. The ability of CK 8 to promote plasminogen activation may be important in the pericellular spaces surrounding breast cancer cells and at the cell surface.

Full Text

The Full Text of this article is available as a PDF (505.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achtstaetter T., Hatzfeld M., Quinlan R. A., Parmelee D. C., Franke W. W. Separation of cytokeratin polypeptides by gel electrophoretic and chromatographic techniques and their identification by immunoblotting. Methods Enzymol. 1986;134:355–371. doi: 10.1016/0076-6879(86)34102-8. [DOI] [PubMed] [Google Scholar]
  2. Bachant J. B., Klymkowsky M. W. A nontetrameric species is the major soluble form of keratin in Xenopus oocytes and rabbit reticulocyte lysates. J Cell Biol. 1996 Jan;132(1-2):153–165. doi: 10.1083/jcb.132.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Björklund B., Björklund V. Specificity and basis of the tissue polypeptide antigen. Cancer Detect Prev. 1983;6(1-2):41–50. [PubMed] [Google Scholar]
  4. Brabon A. C., Williams J. F., Cardiff R. D. A monoclonal antibody to a human breast tumor protein released in response to estrogen. Cancer Res. 1984 Jun;44(6):2704–2710. [PubMed] [Google Scholar]
  5. Chan R., Rossitto P. V., Edwards B. F., Cardiff R. D. Presence of proteolytically processed keratins in the culture medium of MCF-7 cells. Cancer Res. 1986 Dec;46(12 Pt 1):6353–6359. [PubMed] [Google Scholar]
  6. Christensen U. C-terminal lysine residues of fibrinogen fragments essential for binding to plasminogen. FEBS Lett. 1985 Mar 11;182(1):43–46. doi: 10.1016/0014-5793(85)81150-9. [DOI] [PubMed] [Google Scholar]
  7. Chu Y. W., Runyan R. B., Oshima R. G., Hendrix M. J. Expression of complete keratin filaments in mouse L cells augments cell migration and invasion. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4261–4265. doi: 10.1073/pnas.90.9.4261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deutsch D. G., Mertz E. T. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970 Dec 4;170(3962):1095–1096. doi: 10.1126/science.170.3962.1095. [DOI] [PubMed] [Google Scholar]
  9. Fleury V., Anglés-Cano E. Characterization of the binding of plasminogen to fibrin surfaces: the role of carboxy-terminal lysines. Biochemistry. 1991 Jul 30;30(30):7630–7638. doi: 10.1021/bi00244a035. [DOI] [PubMed] [Google Scholar]
  10. Franke F. E., Schachenmayr W., Osborn M., Altmannsberger M. Unexpected immunoreactivities of intermediate filament antibodies in human brain and brain tumors. Am J Pathol. 1991 Jul;139(1):67–79. [PMC free article] [PubMed] [Google Scholar]
  11. Fuchs E., Weber K. Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem. 1994;63:345–382. doi: 10.1146/annurev.bi.63.070194.002021. [DOI] [PubMed] [Google Scholar]
  12. Gonias S. L., Braud L. L., Geary W. A., VandenBerg S. R. Plasminogen binding to rat hepatocytes in primary culture and to thin slices of rat liver. Blood. 1989 Aug 1;74(2):729–736. [PubMed] [Google Scholar]
  13. Hajjar K. A., Harpel P. C., Jaffe E. A., Nachman R. L. Binding of plasminogen to cultured human endothelial cells. J Biol Chem. 1986 Sep 5;261(25):11656–11662. [PubMed] [Google Scholar]
  14. Hajjar K. A., Jacovina A. T., Chacko J. An endothelial cell receptor for plasminogen/tissue plasminogen activator. I. Identity with annexin II. J Biol Chem. 1994 Aug 19;269(33):21191–21197. [PubMed] [Google Scholar]
  15. Hembrough T. A., Vasudevan J., Allietta M. M., Glass W. F., 2nd, Gonias S. L. A cytokeratin 8-like protein with plasminogen-binding activity is present on the external surfaces of hepatocytes, HepG2 cells and breast carcinoma cell lines. J Cell Sci. 1995 Mar;108(Pt 3):1071–1082. doi: 10.1242/jcs.108.3.1071. [DOI] [PubMed] [Google Scholar]
  16. Hendrix M. J., Seftor E. A., Chu Y. W., Seftor R. E., Nagle R. B., McDaniel K. M., Leong S. P., Yohem K. H., Leibovitz A. M., Meyskens F. L., Jr Coexpression of vimentin and keratins by human melanoma tumor cells: correlation with invasive and metastatic potential. J Natl Cancer Inst. 1992 Feb 5;84(3):165–174. doi: 10.1093/jnci/84.3.165. [DOI] [PubMed] [Google Scholar]
  17. Henkin J., Marcotte P., Yang H. C. The plasminogen-plasmin system. Prog Cardiovasc Dis. 1991 Sep-Oct;34(2):135–164. doi: 10.1016/0033-0620(91)90010-j. [DOI] [PubMed] [Google Scholar]
  18. Holloway R. L. New endocranial values for the australopithecines. Nature. 1970 Jul 11;227(5254):199–200. doi: 10.1038/227199a0. [DOI] [PubMed] [Google Scholar]
  19. Hoylaerts M., Rijken D. C., Lijnen H. R., Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem. 1982 Mar 25;257(6):2912–2919. [PubMed] [Google Scholar]
  20. Knapp A. C., Bosch F. X., Hergt M., Kuhn C., Winter-Simanowski S., Schmid E., Regauer S., Bartek J., Franke W. W. Cytokeratins and cytokeratin filaments in subpopulations of cultured human and rodent cells of nonepithelial origin: modes and patterns of formation. Differentiation. 1989 Dec;42(2):81–102. doi: 10.1111/j.1432-0436.1989.tb00610.x. [DOI] [PubMed] [Google Scholar]
  21. Knudsen B. S., Silverstein R. L., Leung L. L., Harpel P. C., Nachman R. L. Binding of plasminogen to extracellular matrix. J Biol Chem. 1986 Aug 15;261(23):10765–10771. [PubMed] [Google Scholar]
  22. Kolev K., Owen W. G., Machovich R. Dual effect of synthetic plasmin substrates on plasminogen activation. Biochim Biophys Acta. 1995 Mar 15;1247(2):239–245. doi: 10.1016/0167-4838(94)00220-b. [DOI] [PubMed] [Google Scholar]
  23. Leube R. E., Bosch F. X., Romano V., Zimbelmann R., Höfler H., Franke W. W. Cytokeratin expression in simple epithelia. III. Detection of mRNAs encoding human cytokeratins nos. 8 and 18 in normal and tumor cells by hybridization with cDNA sequences in vitro and in situ. Differentiation. 1986;33(1):69–85. doi: 10.1111/j.1432-0436.1986.tb00412.x. [DOI] [PubMed] [Google Scholar]
  24. Machovich R., Owen W. G. Facilitation of plasminogen activation by a plasmin substrate containing a lysyl residue. Thromb Haemost. 1993 Nov 15;70(5):864–866. [PubMed] [Google Scholar]
  25. Mangel W. F., Lin B. H., Ramakrishnan V. Characterization of an extremely large, ligand-induced conformational change in plasminogen. Science. 1990 Apr 6;248(4951):69–73. doi: 10.1126/science.2108500. [DOI] [PubMed] [Google Scholar]
  26. Miles L. A., Dahlberg C. M., Plescia J., Felez J., Kato K., Plow E. F. Role of cell-surface lysines in plasminogen binding to cells: identification of alpha-enolase as a candidate plasminogen receptor. Biochemistry. 1991 Feb 12;30(6):1682–1691. doi: 10.1021/bi00220a034. [DOI] [PubMed] [Google Scholar]
  27. Moll R., Franke W. W., Schiller D. L., Geiger B., Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982 Nov;31(1):11–24. doi: 10.1016/0092-8674(82)90400-7. [DOI] [PubMed] [Google Scholar]
  28. Morita T., Tondella M. L., Takemoto Y., Hashido K., Ichinose Y., Nozaki M., Matsushiro A. Nucleotide sequence of mouse EndoA cytokeratin cDNA reveals polypeptide characteristics of the type-II keratin subfamily. Gene. 1988 Aug 15;68(1):109–117. doi: 10.1016/0378-1119(88)90604-x. [DOI] [PubMed] [Google Scholar]
  29. Pannell R., Gurewich V. Pro-urokinase: a study of its stability in plasma and of a mechanism for its selective fibrinolytic effect. Blood. 1986 May;67(5):1215–1223. [PubMed] [Google Scholar]
  30. Plow E. F., Herren T., Redlitz A., Miles L. A., Hoover-Plow J. L. The cell biology of the plasminogen system. FASEB J. 1995 Jul;9(10):939–945. doi: 10.1096/fasebj.9.10.7615163. [DOI] [PubMed] [Google Scholar]
  31. Ponting C. P., Marshall J. M., Cederholm-Williams S. A. Plasminogen: a structural review. Blood Coagul Fibrinolysis. 1992 Oct;3(5):605–614. [PubMed] [Google Scholar]
  32. Schaafsma H. E., Ramaekers F. C., van Muijen G. N., Robben H., Lane E. B., Leigh I. M., Ooms E. C., Schalken J. A., van Moorselaar R. J., Ruiter D. J. Cytokeratin expression patterns in metastatic transitional cell carcinoma of the urinary tract. An immunohistochemical study comparing local tumor and autologous metastases. Am J Pathol. 1991 Dec;139(6):1389–1400. [PMC free article] [PubMed] [Google Scholar]
  33. Schaafsma H. E., Van Der Velden L. A., Manni J. J., Peters H., Link M., Rutter D. J., Ramaekers F. C. Increased expression of cytokeratins 8, 18 and vimentin in the invasion front of mucosal squamous cell carcinoma. J Pathol. 1993 May;170(1):77–86. doi: 10.1002/path.1711700113. [DOI] [PubMed] [Google Scholar]
  34. Stack S., Gonzalez-Gronow M., Pizzo S. V. Regulation of plasminogen activation by components of the extracellular matrix. Biochemistry. 1990 May 22;29(20):4966–4970. doi: 10.1021/bi00472a029. [DOI] [PubMed] [Google Scholar]
  35. Urano T., Chibber B. A., Castellino F. J. The reciprocal effects of epsilon-aminohexanoic acid and chloride ion on the activation of human [Glu1]plasminogen by human urokinase. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4031–4034. doi: 10.1073/pnas.84.12.4031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Violand B. N., Byrne R., Castellino F. J. The effect of alpha-,omega-amino acids on human plasminogen structure and activation. J Biol Chem. 1978 Aug 10;253(15):5395–5401. [PubMed] [Google Scholar]
  37. Weber K., Osborn M., Moll R., Wiklund B., Lüning B. Tissue polypeptide antigen (TPA) is related to the non-epidermal keratins 8, 18 and 19 typical of simple and non-squamous epithelia: re-evaluation of a human tumor marker. EMBO J. 1984 Nov;3(11):2707–2714. doi: 10.1002/j.1460-2075.1984.tb02198.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES