Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Aug 1;317(Pt 3):779–783. doi: 10.1042/bj3170779

Amplification of the thapsigargin-evoked increase in the cytosolic free Ca2+ concentration by acetylcholine in acutely isolated mouse submandibular acinar cells.

P M Smith 1, H E Reed 1
PMCID: PMC1217552  PMID: 8760362

Abstract

The intracellular Ca2+ concentration was measured in single, acutely isolated, mouse submandibular acinar cells loaded with fura-2 AM. All experiments were performed in the absence of extracellular Ca2+ in order to eliminate Ca2+ influx. The microsomal ATPase inhibitor, thapsigargin, was used to release Ca2+ from intracellular stores and simultaneously prevent re-uptake into the stores. Sequential application of thapsigargin (2 microM) and the Ca2+ ionophore ionomycin (500 nM) indicated that thapsigargin was able to mobilize practically all intracellular Ca2+. Furthermore, in comparison with results obtained following inhibition of the plasma membrane Ca(2+)-ATPase by La3+ (2 mM), it may be shown that slowly unloading the intracellular Ca2+ stores using thapsigargin does not normally cause a massive, cytotoxic, increase in the cytosolic Ca2+ concentration, because Ca2+ is rapidly extruded from the cell across the plasma membrane. Application of a submaximal dose of acetylcholine (500 nM) during the rising phase of the response to thapsigargin caused a 3-4-fold increase in the amplitude of the rise in the cytosolic Ca2+ concentration without any significant alteration of the time course of the response. As thapsigargin alone is capable of mobilizing all releasable Ca2+, this increase in amplitude is most likely the result of inhibition of the Ca2+ extrusion process by acetylcholine.

Full Text

The Full Text of this article is available as a PDF (495.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balasubramanyam M., Gardner J. P. Protein kinase C modulates cytosolic free calcium by stimulating calcium pump activity in Jurkat T cells. Cell Calcium. 1995 Dec;18(6):526–541. doi: 10.1016/0143-4160(95)90015-2. [DOI] [PubMed] [Google Scholar]
  2. Bezprozvanny I., Watras J., Ehrlich B. E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 1991 Jun 27;351(6329):751–754. doi: 10.1038/351751a0. [DOI] [PubMed] [Google Scholar]
  3. Bird G. J., Obie J. F., Putney J. W., Jr Functional homogeneity of the non-mitochondrial Ca2+ pool in intact mouse lacrimal acinar cells. J Biol Chem. 1992 Sep 15;267(26):18382–18386. [PubMed] [Google Scholar]
  4. Carafoli E. Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J. 1994 Oct;8(13):993–1002. [PubMed] [Google Scholar]
  5. Carafoli E., Zurini M. The Ca2+-pumping ATPase of plasma membranes. Purification, reconstitution and properties. Biochim Biophys Acta. 1982 Dec 31;683(3-4):279–301. doi: 10.1016/0304-4173(82)90004-0. [DOI] [PubMed] [Google Scholar]
  6. Changya L., Gallacher D. V., Irvine R. F., Potter B. V., Petersen O. H. Inositol 1,3,4,5-tetrakisphosphate is essential for sustained activation of the Ca2+-dependent K+ current in single internally perfused mouse lacrimal acinar cells. J Membr Biol. 1989 Jul;109(1):85–93. doi: 10.1007/BF01870793. [DOI] [PubMed] [Google Scholar]
  7. Choquette D., Hakim G., Filoteo A. G., Plishker G. A., Bostwick J. R., Penniston J. T. Regulation of plasma membrane Ca2+ ATPases by lipids of the phosphatidylinositol cycle. Biochem Biophys Res Commun. 1984 Dec 28;125(3):908–915. doi: 10.1016/0006-291x(84)91369-x. [DOI] [PubMed] [Google Scholar]
  8. Davis F. B., Davis P. J., Lawrence W. D., Blas S. D. Specific inositol phosphates inhibit basal and calmodulin-stimulated Ca(2+)-ATPase activity in human erythrocyte membranes in vitro and inhibit binding of calmodulin to membranes. FASEB J. 1991 Nov;5(14):2992–2995. doi: 10.1096/fasebj.5.14.1836436. [DOI] [PubMed] [Google Scholar]
  9. Fraser C. L., Sarnacki P. Regulation of plasma membrane-bound Ca(2+)-ATPase pump by inositol phosphates in rat brain. Am J Physiol. 1992 Mar;262(3 Pt 2):F411–F416. doi: 10.1152/ajprenal.1992.262.3.F411. [DOI] [PubMed] [Google Scholar]
  10. Goldbeter A., Dupont G., Berridge M. J. Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1461–1465. doi: 10.1073/pnas.87.4.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kuba K., Takeshita S. Simulation of intracellular Ca2+ oscillation in a sympathetic neurone. J Theor Biol. 1981 Dec 21;93(4):1009–1031. doi: 10.1016/0022-5193(81)90352-0. [DOI] [PubMed] [Google Scholar]
  12. Kuo T. H. Guanine nucleotide-, and inositol triphosphate-induced inhibition of the CA2+ pump in rat heart sarcolemmal vesicles. Biochem Biophys Res Commun. 1988 May 16;152(3):1111–1116. doi: 10.1016/s0006-291x(88)80399-1. [DOI] [PubMed] [Google Scholar]
  13. Kwan C. Y., Takemura H., Obie J. F., Thastrup O., Putney J. W., Jr Effects of MeCh, thapsigargin, and La3+ on plasmalemmal and intracellular Ca2+ transport in lacrimal acinar cells. Am J Physiol. 1990 Jun;258(6 Pt 1):C1006–C1015. doi: 10.1152/ajpcell.1990.258.6.C1006. [DOI] [PubMed] [Google Scholar]
  14. Lagast H., Pozzan T., Waldvogel F. A., Lew P. D. Phorbol myristate acetate stimulates ATP-dependent calcium transport by the plasma membrane of neutrophils. J Clin Invest. 1984 Mar;73(3):878–883. doi: 10.1172/JCI111284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mahey R., Allen B. G., Bridges M. A., Katz S. Regulation of calcium transport in pancreatic acinar plasma membranes from guinea pig. Mol Cell Biochem. 1992 Jun 26;112(2):155–162. doi: 10.1007/BF00227572. [DOI] [PubMed] [Google Scholar]
  16. Morgan A. J., Jacob R. Ionomycin enhances Ca2+ influx by stimulating store-regulated cation entry and not by a direct action at the plasma membrane. Biochem J. 1994 Jun 15;300(Pt 3):665–672. doi: 10.1042/bj3000665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Neylon C. B., Irvine R. F. Thrombin attenuates the stimulatory effect of histamine on Ca2+ entry in confluent human umbilical vein endothelial cell cultures. J Biol Chem. 1991 Mar 5;266(7):4251–4256. [PubMed] [Google Scholar]
  18. Penniston J. T. Plasma membrane Ca2+-pumping ATPases. Ann N Y Acad Sci. 1982;402:296–303. doi: 10.1111/j.1749-6632.1982.tb25751.x. [DOI] [PubMed] [Google Scholar]
  19. Petersen O. H. Stimulus-secretion coupling: cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells. J Physiol. 1992 Mar;448:1–51. doi: 10.1113/jphysiol.1992.sp019028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pillai S., Bikle D. D. Lanthanum influx into cultured human keratinocytes: effect on calcium flux and terminal differentiation. J Cell Physiol. 1992 Jun;151(3):623–629. doi: 10.1002/jcp.1041510323. [DOI] [PubMed] [Google Scholar]
  21. Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
  22. Smith P. M., Gallacher D. V. Acetylcholine- and caffeine-evoked repetitive transient Ca(2+)-activated K+ and C1- currents in mouse submandibular cells. J Physiol. 1992 Apr;449:109–120. doi: 10.1113/jphysiol.1992.sp019077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith P. M., Gallacher D. V. Thapsigargin-induced Ca2+ mobilization in acutely isolated mouse lacrimal acinar cells is dependent on a basal level of Ins(1,4,5)P3 and is inhibited by heparin. Biochem J. 1994 Apr 1;299(Pt 1):37–40. doi: 10.1042/bj2990037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smith P. M. Ins(1,3,4,5)P4 promotes sustained activation of the Ca(2+(-dependent Cl- current in isolated mouse lacrimal cells. Biochem J. 1992 Apr 1;283(Pt 1):27–30. doi: 10.1042/bj2830027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tepikin A. V., Voronina S. G., Gallacher D. V., Petersen O. H. Acetylcholine-evoked increase in the cytoplasmic Ca2+ concentration and Ca2+ extrusion measured simultaneously in single mouse pancreatic acinar cells. J Biol Chem. 1992 Feb 25;267(6):3569–3572. [PubMed] [Google Scholar]
  26. Yamaguchi D. T., Green J., Kleeman C. R., Muallem S. Properties of the depolarization-activated calcium and barium entry in osteoblast-like cells. J Biol Chem. 1989 Jan 5;264(1):197–204. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES