Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Aug 1;317(Pt 3):791–795. doi: 10.1042/bj3170791

Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over beta-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states.

L Drynan 1, P A Quant 1, V A Zammit 1
PMCID: PMC1217554  PMID: 8760364

Abstract

The Flux Control Coefficients of mitochondrial outer membrane carnitine palmitoyltransferase (CPT I) with respect to the overall rates of beta-oxidation, ketogenesis and tricarboxylic acid cycle activity were measured in hepatocytes isolated from rats in different metabolic states (fed, 24 h-starved, starved-refed and starved/insulin-treated). These conditions were chosen because there is controversy as to whether, when significant control ceases to be exerted by CPT I over the rate of fatty oxidation [Moir and Zammit (1994) Trends Biochem. Sci. 19, 313-317], this is transferred to one or more steps proximal to acylcarnitine synthesis (e.g. decreased delivery of fatty acids to the liver) or to the reaction catalysed by mitochondrial 3-hydroxy-3-methyl-glutaryl-CoA synthase [Hegardt (1995) Biochem. Soc. Trans. 23, 486-490]. Therefore isolated hepatocytes were used in the present study to exclude the involvement of changes in the rate of delivery of non-esterified fatty acids (NEFA) to the liver, such as occur in vivo, and to ascertain whether, under conditions of constant supply of NEFA, CPT I retains control over the relevant fluxes of fatty acid oxidation to ketones and carbon dioxide, or whether control is transferred to another (intrahepatocytic) site. The results clearly show that the Flux Control Coefficients of CPT I with respect to overall beta-oxidation and ketogenesis are very high under all conditions investigated, indicating that control is not lost to another intrahepatic site during the metabolic transitions studied. The control of CPT I over tricarboxylic acid cycle activity was always very low. The significance of these findings for the integration of fatty acid and carbohydrate metabolism in the liver is discussed.

Full Text

The Full Text of this article is available as a PDF (466.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boon M. R., Zammit V. A. Use of a selectively permeabilized isolated rat hepatocyte preparation to study changes in the properties of overt carnitine palmitoyltransferase activity in situ. Biochem J. 1988 Feb 1;249(3):645–652. doi: 10.1042/bj2490645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Broadway N. M., Saggerson E. D. Microsomal carnitine acyltransferases. Biochem Soc Trans. 1995 Aug;23(3):490–494. doi: 10.1042/bst0230490. [DOI] [PubMed] [Google Scholar]
  3. Casals N., Roca N., Guerrero M., Gil-Gómez G., Ayté J., Ciudad C. J., Hegardt F. G. Regulation of the expression of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene. Its role in the control of ketogenesis. Biochem J. 1992 Apr 1;283(Pt 1):261–264. doi: 10.1042/bj2830261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chatterjee B., Song C. S., Kim J. M., Roy A. K. Cloning, sequencing, and regulation of rat liver carnitine octanoyltransferase: transcriptional stimulation of the enzyme during peroxisome proliferation. Biochemistry. 1988 Dec 13;27(25):9000–9006. doi: 10.1021/bi00425a018. [DOI] [PubMed] [Google Scholar]
  5. Cook G. A. Differences in the sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA are due to differences in Ki values. J Biol Chem. 1984 Oct 10;259(19):12030–12033. [PubMed] [Google Scholar]
  6. Cook G. A., Otto D. A., Cornell N. W. Differential inhibition of ketogenesis by malonyl-CoA in mitochondria from fed and starved rats. Biochem J. 1980 Dec 15;192(3):955–958. doi: 10.1042/bj1920955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Des Rosiers C., David F., Garneau M., Brunengraber H. Nonhomogeneous labeling of liver mitochondrial acetyl-CoA. J Biol Chem. 1991 Jan 25;266(3):1574–1578. [PubMed] [Google Scholar]
  8. Garland P. B., Shepherd D., Nicholls D. G., Ontko J. Energy-dependent control of the tricarboxylic acid cycle by fatty acid oxidation in rat liver mitochondria. Adv Enzyme Regul. 1968;6:3–30. doi: 10.1016/0065-2571(68)90005-8. [DOI] [PubMed] [Google Scholar]
  9. Grantham B. D., Zammit V. A. Restoration of the properties of carnitine palmitoyltransferase I in liver mitochondria during re-feeding of starved rats. Biochem J. 1986 Oct 15;239(2):485–488. doi: 10.1042/bj2390485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grantham B. D., Zammit V. A. Role of carnitine palmitoyltransferase I in the regulation of hepatic ketogenesis during the onset and reversal of chronic diabetes. Biochem J. 1988 Jan 15;249(2):409–414. doi: 10.1042/bj2490409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guzman M., Kolodziej M. P., Caldwell A., Corstorphine C. G., Zammit V. A. Evidence against direct involvement of phosphorylation in the activation of carnitine palmitoyltransferase by okadaic acid in rat hepatocytes. Biochem J. 1994 Jun 15;300(Pt 3):693–699. doi: 10.1042/bj3000693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guzmán M., Geelen M. J. Activity of carnitine palmitoyltransferase in mitochondrial outer membranes and peroxisomes in digitonin-permeabilized hepatocytes. Selective modulation of mitochondrial enzyme activity by okadaic acid. Biochem J. 1992 Oct 15;287(Pt 2):487–492. doi: 10.1042/bj2870487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hegardt F. G. Regulation of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene expression in liver and intestine from the rat. Biochem Soc Trans. 1995 Aug;23(3):486–490. doi: 10.1042/bst0230486. [DOI] [PubMed] [Google Scholar]
  14. Katz J., McGarry J. D. The glucose paradox. Is glucose a substrate for liver metabolism? J Clin Invest. 1984 Dec;74(6):1901–1909. doi: 10.1172/JCI111610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kiorpes T. C., Hoerr D., Ho W., Weaner L. E., Inman M. G., Tutwiler G. F. Identification of 2-tetradecylglycidyl coenzyme A as the active form of methyl 2-tetradecylglycidate (methyl palmoxirate) and its characterization as an irreversible, active site-directed inhibitor of carnitine palmitoyltransferase A in isolated rat liver mitochondria. J Biol Chem. 1984 Aug 10;259(15):9750–9755. [PubMed] [Google Scholar]
  16. Kolodziej M. P., Crilly P. J., Corstorphine C. G., Zammit V. A. Development and characterization of a polyclonal antibody against rat liver mitochondrial overt carnitine palmitoyltransferase (CPT I). Distinction of CPT I from CPT II and of isoforms of CPT I in different tissues. Biochem J. 1992 Mar 1;282(Pt 2):415–421. doi: 10.1042/bj2820415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lilly K., Bugaisky G. E., Umeda P. K., Bieber L. L. The medium-chain carnitine acyltransferase activity associated with rat liver microsomes is malonyl-CoA sensitive. Arch Biochem Biophys. 1990 Jul;280(1):167–174. doi: 10.1016/0003-9861(90)90532-4. [DOI] [PubMed] [Google Scholar]
  18. Lopes-Cardozo M., Mulder I., van Vugt F., Hermans P. G., van den Bergh S. G., Klazinga W., de Vries-Akkerman E. Aspects of ketogenesis: control and mechanism of ketone-body formation in isolated rat-liver mitochondria. Mol Cell Biochem. 1975 Dec 31;9(3):155–173. doi: 10.1007/BF01751311. [DOI] [PubMed] [Google Scholar]
  19. McGarry J. D., Mannaerts G. P., Foster D. W. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest. 1977 Jul;60(1):265–270. doi: 10.1172/JCI108764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moir A. M., Zammit V. A. Effects of insulin treatment of diabetic rats on hepatic partitioning of fatty acids between oxidation and esterification, phospholipid and acylglycerol synthesis, and on the fractional rate of secretion of triacylglycerol in vivo. Biochem J. 1994 Nov 15;304(Pt 1):177–182. doi: 10.1042/bj3040177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moir A. M., Zammit V. A. Monitoring of changes in hepatic fatty acid and glycerolipid metabolism during the starved-to-fed transition in vivo. Studies on awake, unrestrained rats. Biochem J. 1993 Jan 1;289(Pt 1):49–55. doi: 10.1042/bj2890049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ontko J. A., Johns M. L. Evaluation of malonyl-CoA in the regulation of long-chain fatty acid oxidation in the liver. Evidence for an unidentified regulatory component of the system. Biochem J. 1980 Dec 15;192(3):959–962. doi: 10.1042/bj1920959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Quant P. A. Activity and expression of hepatic mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase during the starved-to-fed transition. Biochem Soc Trans. 1990 Oct;18(5):994–995. doi: 10.1042/bst0180994. [DOI] [PubMed] [Google Scholar]
  24. Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
  25. Serra D., Casals N., Asins G., Royo T., Ciudad C. J., Hegardt F. G. Regulation of mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase protein by starvation, fat feeding, and diabetes. Arch Biochem Biophys. 1993 Nov 15;307(1):40–45. doi: 10.1006/abbi.1993.1557. [DOI] [PubMed] [Google Scholar]
  26. Small J. R. Flux control coefficients determined by inhibitor titration: the design and analysis of experiments to minimize errors. Biochem J. 1993 Dec 1;296(Pt 2):423–433. doi: 10.1042/bj2960423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sugden M. C., Watts D. I., Palmer T. N., Myles D. D. Direction of carbon flux in starvation and after refeeding: in vitro and in vivo effects of 3-mercaptopicolinate. Biochem Int. 1983 Sep;7(3):329–337. [PubMed] [Google Scholar]
  28. Zammit V. A. Effects of hydration state on the synthesis and secretion of triacylglycerol by isolated rat hepatocytes. Implications for the actions of insulin and glucagon on hepatic secretion. Biochem J. 1995 Nov 15;312(Pt 1):57–62. doi: 10.1042/bj3120057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zammit V. A., Moir A. M. Monitoring the partitioning of hepatic fatty acids in vivo: keeping track of control. Trends Biochem Sci. 1994 Aug;19(8):313–317. doi: 10.1016/0968-0004(94)90068-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES