Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Aug 1;317(Pt 3):891–899. doi: 10.1042/bj3170891

Purification of a rat neurotensin receptor expressed in Escherichia coli.

J Tucker 1, R Grisshammer 1
PMCID: PMC1217569  PMID: 8760379

Abstract

A truncated rat neurotensin receptor (NTR), expressed in Escherichia coli with the maltose-binding protein fused to its N-terminus and the 13 amino acid Bio tag fused to its C-terminus, was purified to apparent homogeneity in two steps by use of the monomeric avidin system followed by a novel neurotensin column. This purification protocol was developed by engineering a variety of affinity tags on to the C-terminus of NTR. Surprisingly, expression levels varied considerably depending on the C-terminal tag used. Functional expression of NTR was highest (800 receptors/cell) when thioredoxin was placed between the receptor C-terminus and the tag, indicating a stabilizing effect of the thioredoxin moiety. Several affinity chromatography methods were tested for purification. NTR with the in vivo-biotinylated Bio tag was purified with the highest efficiency compared with NTR with the Strep tag or a hexa-histidine tail. Co-expression of biotin ligase improved considerably the in vivo biotinylation of the Bio tag and, therefore, the overall purification yield. Proteolysis of the NTR fusion protein was prevented by removing a protease-sensitive site discovered at the N-terminus of NTR. The ligand binding properties of the purified receptor were similar to those of the membrane-bound protein and the native receptor. The scale-up of this purification scheme, to provide sufficient protein for biophysical studies, is in progress.

Full Text

The Full Text of this article is available as a PDF (589.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold F. H. Metal-affinity separations: a new dimension in protein processing. Biotechnology (N Y) 1991 Feb;9(2):151–156. doi: 10.1038/nbt0291-151. [DOI] [PubMed] [Google Scholar]
  2. Baldwin J. M. Structure and function of receptors coupled to G proteins. Curr Opin Cell Biol. 1994 Apr;6(2):180–190. doi: 10.1016/0955-0674(94)90134-1. [DOI] [PubMed] [Google Scholar]
  3. Berhe A., Fristedt U., Persson B. L. Expression and purification of the high-affinity phosphate transporter of Saccharomyces cerevisiae. Eur J Biochem. 1995 Jan 15;227(1-2):566–572. doi: 10.1111/j.1432-1033.1995.tb20426.x. [DOI] [PubMed] [Google Scholar]
  4. Buoncristiani M. R., Howard P. K., Otsuka A. J. DNA-binding and enzymatic domains of the bifunctional biotin operon repressor (BirA) of Escherichia coli. Gene. 1986;44(2-3):255–261. doi: 10.1016/0378-1119(86)90189-7. [DOI] [PubMed] [Google Scholar]
  5. Chabry J., Botto J. M., Nouel D., Beaudet A., Vincent J. P., Mazella J. Thr-422 and Tyr-424 residues in the carboxyl terminus are critical for the internalization of the rat neurotensin receptor. J Biol Chem. 1995 Feb 10;270(6):2439–2442. doi: 10.1074/jbc.270.6.2439. [DOI] [PubMed] [Google Scholar]
  6. Chabry J., Gaudriault G., Vincent J. P., Mazella J. Implication of various forms of neurotensin receptors in the mechanism of internalization of neurotensin in cerebral neurons. J Biol Chem. 1993 Aug 15;268(23):17138–17144. [PubMed] [Google Scholar]
  7. Chabry J., Labbé-Jullié C., Gully D., Kitabgi P., Vincent J. P., Mazella J. Stable expression of the cloned rat brain neurotensin receptor into fibroblasts: binding properties, photoaffinity labeling, transduction mechanisms, and internalization. J Neurochem. 1994 Jul;63(1):19–27. doi: 10.1046/j.1471-4159.1994.63010019.x. [DOI] [PubMed] [Google Scholar]
  8. Consler T. G., Persson B. L., Jung H., Zen K. H., Jung K., Privé G. G., Verner G. E., Kaback H. R. Properties and purification of an active biotinylated lactose permease from Escherichia coli. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6934–6938. doi: 10.1073/pnas.90.15.6934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Covarrubias L., Cervantes L., Covarrubias A., Soberón X., Vichido I., Blanco A., Kupersztoch-Portnoy Y. M., Bolivar F. Construction and characterization of new cloning vehicles. V. Mobilization and coding properties of pBR322 and several deletion derivatives including pBR327 and pBR328. Gene. 1981 Jan-Feb;13(1):25–35. doi: 10.1016/0378-1119(81)90040-8. [DOI] [PubMed] [Google Scholar]
  10. Cronan J. E., Jr Biotination of proteins in vivo. A post-translational modification to label, purify, and study proteins. J Biol Chem. 1990 Jun 25;265(18):10327–10333. [PubMed] [Google Scholar]
  11. Dimroth P. Preparation, characterization, and reconstitution of oxaloacetate decarboxylase from Klebsiella aerogenes, a sodium pump. Methods Enzymol. 1986;125:530–540. doi: 10.1016/s0076-6879(86)25042-9. [DOI] [PubMed] [Google Scholar]
  12. Duplay P., Bedouelle H., Fowler A., Zabin I., Saurin W., Hofnung M. Sequences of the malE gene and of its product, the maltose-binding protein of Escherichia coli K12. J Biol Chem. 1984 Aug 25;259(16):10606–10613. [PubMed] [Google Scholar]
  13. Eppler C. M., Zysk J. R., Corbett M., Shieh H. M. Purification of a pituitary receptor for somatostatin. The utility of biotinylated somatostatin analogs. J Biol Chem. 1992 Aug 5;267(22):15603–15612. [PubMed] [Google Scholar]
  14. Fall R. R. Analysis of microbial biotin proteins. Methods Enzymol. 1979;62:390–398. doi: 10.1016/0076-6879(79)62246-2. [DOI] [PubMed] [Google Scholar]
  15. Fong T. M., Huang R. R., Strader C. D. Localization of agonist and antagonist binding domains of the human neurokinin-1 receptor. J Biol Chem. 1992 Dec 25;267(36):25664–25667. [PubMed] [Google Scholar]
  16. Goedert M. Radioligand-binding assays for study of neurotensin receptors. Methods Enzymol. 1989;168:462–481. doi: 10.1016/0076-6879(89)68036-6. [DOI] [PubMed] [Google Scholar]
  17. Grisshammer R., Duckworth R., Henderson R. Expression of a rat neurotensin receptor in Escherichia coli. Biochem J. 1993 Oct 15;295(Pt 2):571–576. doi: 10.1042/bj2950571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Grisshammer R., Tate C. G. Overexpression of integral membrane proteins for structural studies. Q Rev Biophys. 1995 Aug;28(3):315–422. doi: 10.1017/s0033583500003504. [DOI] [PubMed] [Google Scholar]
  19. Gully D., Canton M., Boigegrain R., Jeanjean F., Molimard J. C., Poncelet M., Gueudet C., Heaulme M., Leyris R., Brouard A. Biochemical and pharmacological profile of a potent and selective nonpeptide antagonist of the neurotensin receptor. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):65–69. doi: 10.1073/pnas.90.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hazum E., Schvartz I., Waksman Y., Keinan D. Solubilization and purification of rat pituitary gonadotropin-releasing hormone receptor. J Biol Chem. 1986 Oct 5;261(28):13043–13048. [PubMed] [Google Scholar]
  21. Henderson P. J., Macpherson A. J. Assay, genetics, proteins, and reconstitution of proton-linked galactose, arabinose, and xylose transport systems of Escherichia coli. Methods Enzymol. 1986;125:387–429. doi: 10.1016/s0076-6879(86)25033-8. [DOI] [PubMed] [Google Scholar]
  22. Janssen J. J., Bovee-Geurts P. H., Merkx M., DeGrip W. J. Histidine tagging both allows convenient single-step purification of bovine rhodopsin and exerts ionic strength-dependent effects on its photochemistry. J Biol Chem. 1995 May 12;270(19):11222–11229. doi: 10.1074/jbc.270.19.11222. [DOI] [PubMed] [Google Scholar]
  23. Jeng M. F., Campbell A. P., Begley T., Holmgren A., Case D. A., Wright P. E., Dyson H. J. High-resolution solution structures of oxidized and reduced Escherichia coli thioredoxin. Structure. 1994 Sep 15;2(9):853–868. doi: 10.1016/s0969-2126(94)00086-7. [DOI] [PubMed] [Google Scholar]
  24. Katti S. K., LeMaster D. M., Eklund H. Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J Mol Biol. 1990 Mar 5;212(1):167–184. doi: 10.1016/0022-2836(90)90313-B. [DOI] [PubMed] [Google Scholar]
  25. Kleymann G., Ostermeier C., Ludwig B., Skerra A., Michel H. Engineered Fv fragments as a tool for the one-step purification of integral multisubunit membrane protein complexes. Biotechnology (N Y) 1995 Feb;13(2):155–160. doi: 10.1038/nbt0295-155. [DOI] [PubMed] [Google Scholar]
  26. Kobilka B. K. Amino and carboxyl terminal modifications to facilitate the production and purification of a G protein-coupled receptor. Anal Biochem. 1995 Oct 10;231(1):269–271. doi: 10.1006/abio.1995.1533. [DOI] [PubMed] [Google Scholar]
  27. Kozuka M., Ito T., Hirose S., Lodhi K. M., Hagiwara H. Purification and characterization of bovine lung endothelin receptor. J Biol Chem. 1991 Sep 5;266(25):16892–16896. [PubMed] [Google Scholar]
  28. Kuusinen A., Arvola M., Oker-Blom C., Keinänen K. Purification of recombinant GluR-D glutamate receptor produced in Sf21 insect cells. Eur J Biochem. 1995 Nov 1;233(3):720–726. doi: 10.1111/j.1432-1033.1995.720_3.x. [DOI] [PubMed] [Google Scholar]
  29. Labbé-Jullié C., Botto J. M., Mas M. V., Chabry J., Mazella J., Vincent J. P., Gully D., Maffrand J. P., Kitabgi P. [3H]SR 48692, the first nonpeptide neurotensin antagonist radioligand: characterization of binding properties and evidence for distinct agonist and antagonist binding domains on the rat neurotensin receptor. Mol Pharmacol. 1995 May;47(5):1050–1056. [PubMed] [Google Scholar]
  30. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  31. Lim C. J., Geraghty D., Fuchs J. A. Cloning and nucleotide sequence of the trxA gene of Escherichia coli K-12. J Bacteriol. 1985 Jul;163(1):311–316. doi: 10.1128/jb.163.1.311-316.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Loddenkötter B., Kammerer B., Fischer K., Flügge U. I. Expression of the functional mature chloroplast triose phosphate translocator in yeast internal membranes and purification of the histidine-tagged protein by a single metal-affinity chromatography step. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2155–2159. doi: 10.1073/pnas.90.6.2155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Loo T. W., Clarke D. M. Rapid purification of human P-glycoprotein mutants expressed transiently in HEK 293 cells by nickel-chelate chromatography and characterization of their drug-stimulated ATPase activities. J Biol Chem. 1995 Sep 15;270(37):21449–21452. doi: 10.1074/jbc.270.37.21449. [DOI] [PubMed] [Google Scholar]
  34. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  35. Mazella J., Chabry J., Kitabgi P., Vincent J. P. Solubilization and characterization of active neurotensin receptors from mouse brain. J Biol Chem. 1988 Jan 5;263(1):144–149. [PubMed] [Google Scholar]
  36. Mazella J., Chabry J., Zsurger N., Vincent J. P. Purification of the neurotensin receptor from mouse brain by affinity chromatography. J Biol Chem. 1989 Apr 5;264(10):5559–5563. [PubMed] [Google Scholar]
  37. McPherson G. A. Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Methods. 1985 Nov;14(3):213–228. doi: 10.1016/0160-5402(85)90034-8. [DOI] [PubMed] [Google Scholar]
  38. Mitchell D. M., Gennis R. B. Rapid purification of wildtype and mutant cytochrome c oxidase from Rhodobacter sphaeroides by Ni(2+)-NTA affinity chromatography. FEBS Lett. 1995 Jul 10;368(1):148–150. doi: 10.1016/0014-5793(95)00626-k. [DOI] [PubMed] [Google Scholar]
  39. Miyamoto-Lee Y., Shiosaka S., Tohyama M. Purification and characterization of neurotensin receptor from rat brain with special reference to comparison between newborn and adult age rats. Peptides. 1991 Sep-Oct;12(5):1001–1006. doi: 10.1016/0196-9781(91)90050-y. [DOI] [PubMed] [Google Scholar]
  40. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  41. Nygren P. A., Ståhl S., Uhlén M. Engineering proteins to facilitate bioprocessing. Trends Biotechnol. 1994 May;12(5):184–188. doi: 10.1016/0167-7799(94)90080-9. [DOI] [PubMed] [Google Scholar]
  42. Ohtaki T., Masuda Y., Ishibashi Y., Kitada C., Arimura A., Fujino M. Purification and characterization of the receptor for pituitary adenylate cyclase-activating polypeptide. J Biol Chem. 1993 Dec 15;268(35):26650–26657. [PubMed] [Google Scholar]
  43. Parsell D. A., Silber K. R., Sauer R. T. Carboxy-terminal determinants of intracellular protein degradation. Genes Dev. 1990 Feb;4(2):277–286. doi: 10.1101/gad.4.2.277. [DOI] [PubMed] [Google Scholar]
  44. Peters D., Frank R., Hengstenberg W. Lactose-specific enzyme II of the phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus aureus. Purification of the histidine-tagged transmembrane component IICBLac and its hydrophilic IIB domain by metal-affinity chromatography, and functional characterization. Eur J Biochem. 1995 Mar 15;228(3):798–804. doi: 10.1111/j.1432-1033.1995.0798m.x. [DOI] [PubMed] [Google Scholar]
  45. Pos K. M., Bott M., Dimroth P. Purification of two active fusion proteins of the Na(+)-dependent citrate carrier of Klebsiella pneumoniae. FEBS Lett. 1994 Jun 20;347(1):37–41. doi: 10.1016/0014-5793(94)00502-8. [DOI] [PubMed] [Google Scholar]
  46. Pourcher T., Bassilana M., Sarkar H. K., Kaback H. R., Leblanc G. Melibiose permease of Escherichia coli: mutation of histidine-94 alters expression and stability rather than catalytic activity. Biochemistry. 1992 Jun 9;31(22):5225–5231. doi: 10.1021/bi00137a018. [DOI] [PubMed] [Google Scholar]
  47. Sasai Y., Nakanishi S. Molecular characterization of rat substance K receptor and its mRNAs. Biochem Biophys Res Commun. 1989 Dec 15;165(2):695–702. doi: 10.1016/s0006-291x(89)80022-1. [DOI] [PubMed] [Google Scholar]
  48. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  49. Schatz P. J. Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli. Biotechnology (N Y) 1993 Oct;11(10):1138–1143. doi: 10.1038/nbt1093-1138. [DOI] [PubMed] [Google Scholar]
  50. Schmidt F. S., Skerra A. The bilin-binding protein of Pieris brassicae. cDNA sequence and regulation of expression reveal distinct features of this insect pigment protein. Eur J Biochem. 1994 Feb 1;219(3):855–863. doi: 10.1111/j.1432-1033.1994.tb18567.x. [DOI] [PubMed] [Google Scholar]
  51. Schmidt T. G., Skerra A. One-step affinity purification of bacterially produced proteins by means of the "Strep tag" and immobilized recombinant core streptavidin. J Chromatogr A. 1994 Aug 5;676(2):337–345. doi: 10.1016/0021-9673(94)80434-6. [DOI] [PubMed] [Google Scholar]
  52. Schmidt T. G., Skerra A. The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. Protein Eng. 1993 Jan;6(1):109–122. doi: 10.1093/protein/6.1.109. [DOI] [PubMed] [Google Scholar]
  53. Schonbrunn A., Lee A. B., Brown P. J. Characterization of a biotinylated somatostatin analog as a receptor probe. Endocrinology. 1993 Jan;132(1):146–154. doi: 10.1210/endo.132.1.8093437. [DOI] [PubMed] [Google Scholar]
  54. Seidler A. Introduction of a histidine tail at the N-terminus of a secretory protein expressed in Escherichia coli. Protein Eng. 1994 Oct;7(10):1277–1280. doi: 10.1093/protein/7.10.1277. [DOI] [PubMed] [Google Scholar]
  55. Skerra A., Pfitzinger I., Plückthun A. The functional expression of antibody Fv fragments in Escherichia coli: improved vectors and a generally applicable purification technique. Biotechnology (N Y) 1991 Mar;9(3):273–278. doi: 10.1038/nbt0391-273. [DOI] [PubMed] [Google Scholar]
  56. Stolz J., Darnhofer-Demar B., Sauer N. Rapid purification of a functionally active plant sucrose carrier from transgenic yeast using a bacterial biotin acceptor domain. FEBS Lett. 1995 Dec 18;377(2):167–171. doi: 10.1016/0014-5793(95)01333-4. [DOI] [PubMed] [Google Scholar]
  57. Tanaka K., Masu M., Nakanishi S. Structure and functional expression of the cloned rat neurotensin receptor. Neuron. 1990 Jun;4(6):847–854. doi: 10.1016/0896-6273(90)90137-5. [DOI] [PubMed] [Google Scholar]
  58. Thisted T., Nielsen A. K., Gerdes K. Mechanism of post-segregational killing: translation of Hok, SrnB and Pnd mRNAs of plasmids R1, F and R483 is activated by 3'-end processing. EMBO J. 1994 Apr 15;13(8):1950–1959. doi: 10.1002/j.1460-2075.1994.tb06464.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Thisted T., Sørensen N. S., Gerdes K. Mechanism of post-segregational killing: secondary structure analysis of the entire Hok mRNA from plasmid R1 suggests a fold-back structure that prevents translation and antisense RNA binding. J Mol Biol. 1995 Apr 14;247(5):859–873. doi: 10.1006/jmbi.1995.0186. [DOI] [PubMed] [Google Scholar]
  60. Thisted T., Sørensen N. S., Wagner E. G., Gerdes K. Mechanism of post-segregational killing: Sok antisense RNA interacts with Hok mRNA via its 5'-end single-stranded leader and competes with the 3'-end of Hok mRNA for binding to the mok translational initiation region. EMBO J. 1994 Apr 15;13(8):1960–1968. doi: 10.1002/j.1460-2075.1994.tb06465.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Waeber U., Buhr A., Schunk T., Erni B. The glucose transporter of Escherichia coli. Purification and characterization by Ni+ chelate affinity chromatography of the IIBCGlc subunit. FEBS Lett. 1993 Jun 7;324(1):109–112. doi: 10.1016/0014-5793(93)81542-8. [DOI] [PubMed] [Google Scholar]
  62. Witholt B., Boekhout M., Brock M., Kingma J., Heerikhuizen H. V., Leij L. D. An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli. Anal Biochem. 1976 Jul;74(1):160–170. doi: 10.1016/0003-2697(76)90320-1. [DOI] [PubMed] [Google Scholar]
  63. Zsürger N., Mazella J., Vincent J. P. Solubilization and purification of a high affinity neurotensin receptor from newborn human brain. Brain Res. 1994 Mar 14;639(2):245–252. doi: 10.1016/0006-8993(94)91737-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES