Abstract
Lipoprotein lipase (LPL) has been implicated in the delivery of chylomicron-located alpha-tocopherol (alpha-TocH) to peripheral tissues. To investigate the role of LPL in the cellular uptake of alpha-TocH in peripheral tissue in vivo, three lines of transgenic mice [mouse creatine kinase- (MCK) L, MCK-M and MCK-H] expressing various amounts of human LPL were compared with regard to alpha-TocH levels in plasma, skeletal muscle, cardiac muscle, adipose tissue and brain. Depending on the copy number of the transgene, LPL activity was increased 3- to 27-fold in skeletal muscle and 1.3- to 3.7-fold in cardiac muscle. The intracellular levels of alpha-TocH in skeletal muscle were significantly increased in MCK-M and MCK-H animals and correlated highly with the tissue-specific LPL activity (r = 0.998). The highest levels were observed in MCK-H (21.4 nmol/g) followed by MCK-M (13.3 nmol/g) and MCK-L (8.2 nmol/g) animals when compared with control mice (7.3 nmol/g). Excellent correlation was also observed between intracellular alpha-TocH and non-esterified fatty acid (NEFA) levels (r = 0.998). Although LPL activities in cardiac muscle were also increased in the transgenic mouse lines, alpha-TocH concentrations in the heart remained unchanged. Similarly, alpha-TocH levels in plasma, adipose tissue and brain were unaffected by the tissue specific over-expression of LPL in muscle. The transgenic model presented in this report provides evidence that the uptake of alpha-TocH in muscle is directly dependent on the level of LPL expression in vivo. Increased intracellular alpha-TocH concentrations with increased triglyceride lipolysis and NEFA uptake might protect the myocyte from oxidative damage during increased beta-oxidation.
Full Text
The Full Text of this article is available as a PDF (358.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arita M., Sato Y., Miyata A., Tanabe T., Takahashi E., Kayden H. J., Arai H., Inoue K. Human alpha-tocopherol transfer protein: cDNA cloning, expression and chromosomal localization. Biochem J. 1995 Mar 1;306(Pt 2):437–443. doi: 10.1042/bj3060437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Beisiegel U., Weber W., Bengtsson-Olivecrona G. Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8342–8346. doi: 10.1073/pnas.88.19.8342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bjørneboe A., Bjørneboe G. E., Bodd E., Hagen B. F., Kveseth N., Drevon C. A. Transport and distribution of alpha-tocopherol in lymph, serum and liver cells in rats. Biochim Biophys Acta. 1986 Dec 19;889(3):310–315. doi: 10.1016/0167-4889(86)90193-x. [DOI] [PubMed] [Google Scholar]
- Blaner W. S., Obunike J. C., Kurlandsky S. B., al-Haideri M., Piantedosi R., Deckelbaum R. J., Goldberg I. J. Lipoprotein lipase hydrolysis of retinyl ester. Possible implications for retinoid uptake by cells. J Biol Chem. 1994 Jun 17;269(24):16559–16565. [PubMed] [Google Scholar]
- Catignani G. L., Bieri J. G. Rat liver alpha-tocopherol binding protein. Biochim Biophys Acta. 1977 Apr 27;497(2):349–357. doi: 10.1016/0304-4165(77)90192-1. [DOI] [PubMed] [Google Scholar]
- Clément M., Dinh L., Bourre J. M. Uptake of dietary RRR-alpha- and RRR-gamma-tocopherol by nervous tissues, liver and muscle in vitamin-E-deficient rats. Biochim Biophys Acta. 1995 May 17;1256(2):175–180. doi: 10.1016/0005-2760(95)00019-9. [DOI] [PubMed] [Google Scholar]
- Cohn W., Goss-Sampson M. A., Grun H., Muller D. P. Plasma clearance and net uptake of alpha-tocopherol and low-density lipoprotein by tissues in WHHL and control rabbits. Biochem J. 1992 Oct 1;287(Pt 1):247–254. doi: 10.1042/bj2870247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Bono D. P. Free radicals and antioxidants in vascular biology: the roles of reaction kinetics, environment and substrate turnover. QJM. 1994 Aug;87(8):445–453. [PubMed] [Google Scholar]
- Dutta-Roy A. K., Leishman D. J., Gordon M. J., Campbell F. M., Duthie G. G. Identification of a low molecular mass (14.2 kDa) alpha-tocopherol-binding protein in the cytosol of rat liver and heart. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1108–1112. doi: 10.1006/bbrc.1993.2365. [DOI] [PubMed] [Google Scholar]
- Eisenberg S., Sehayek E., Olivecrona T., Vlodavsky I. Lipoprotein lipase enhances binding of lipoproteins to heparan sulfate on cell surfaces and extracellular matrix. J Clin Invest. 1992 Nov;90(5):2013–2021. doi: 10.1172/JCI116081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallo-Torres H. E. Obligatory role of bile for the intestinal absorption of vitamin E. Lipids. 1970 Apr;5(4):379–384. doi: 10.1007/BF02532102. [DOI] [PubMed] [Google Scholar]
- Gorski J. Muscle triglyceride metabolism during exercise. Can J Physiol Pharmacol. 1992 Jan;70(1):123–131. doi: 10.1139/y92-019. [DOI] [PubMed] [Google Scholar]
- Guggenheim M. A., Ringel S. P., Silverman A., Grabert B. E., Neville H. E. Progressive neuromuscular disease in children with chronic cholestasis and vitamin E deficiency: clinical and muscle biopsy findings and treatment with alpha-tocopherol. Ann N Y Acad Sci. 1982;393:84–95. doi: 10.1111/j.1749-6632.1982.tb31235.x. [DOI] [PubMed] [Google Scholar]
- Hallaq Y., Becker T. C., Manno C. S., Laposata M. Use of acetyl chloride/methanol for assumed selective methylation of plasma nonesterified fatty acids results in significant methylation of esterified fatty acids. Lipids. 1993 Apr;28(4):355–360. doi: 10.1007/BF02536323. [DOI] [PubMed] [Google Scholar]
- Hopp J. F., Palmer W. K. Effect of electrical stimulation on intracellular triacylglycerol in isolated skeletal muscle. J Appl Physiol (1985) 1990 Jan;68(1):348–354. doi: 10.1152/jappl.1990.68.1.348. [DOI] [PubMed] [Google Scholar]
- Krapp A., Zhang H., Ginzinger D., Liu M. S., Lindberg A., Olivecrona G., Hayden M. R., Beisiegel U. Structural features in lipoprotein lipase necessary for the mediation of lipoprotein uptake into cells. J Lipid Res. 1995 Nov;36(11):2362–2373. [PubMed] [Google Scholar]
- Levak-Frank S., Radner H., Walsh A., Stollberger R., Knipping G., Hoefler G., Sattler W., Weinstock P. H., Breslow J. L., Zechner R. Muscle-specific overexpression of lipoprotein lipase causes a severe myopathy characterized by proliferation of mitochondria and peroxisomes in transgenic mice. J Clin Invest. 1995 Aug;96(2):976–986. doi: 10.1172/JCI118145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mann W. A., Meyer N., Weber W., Rinninger F., Greten H., Beisiegel U. Apolipoprotein E and lipoprotein lipase co-ordinately enhance binding and uptake of chylomicrons by human hepatocytes. Eur J Clin Invest. 1995 Nov;25(11):880–882. doi: 10.1111/j.1365-2362.1995.tb01700.x. [DOI] [PubMed] [Google Scholar]
- Niki E. Antioxidants in relation to lipid peroxidation. Chem Phys Lipids. 1987 Jul-Sep;44(2-4):227–253. doi: 10.1016/0009-3084(87)90052-1. [DOI] [PubMed] [Google Scholar]
- Nilsson-Ehle P., Garfinkel A. S., Schotz M. C. Lipolytic enzymes and plasma lipoprotein metabolism. Annu Rev Biochem. 1980;49:667–693. doi: 10.1146/annurev.bi.49.070180.003315. [DOI] [PubMed] [Google Scholar]
- Ouahchi K., Arita M., Kayden H., Hentati F., Ben Hamida M., Sokol R., Arai H., Inoue K., Mandel J. L., Koenig M. Ataxia with isolated vitamin E deficiency is caused by mutations in the alpha-tocopherol transfer protein. Nat Genet. 1995 Feb;9(2):141–145. doi: 10.1038/ng0295-141. [DOI] [PubMed] [Google Scholar]
- Rhys Williams A. T. Simultaneous determination of serum vitamin A and E by liquid chromatography with fluorescence detection. J Chromatogr. 1985 May 31;341(1):198–201. doi: 10.1016/s0378-4347(00)84028-1. [DOI] [PubMed] [Google Scholar]
- Rumsey S. C., Obunike J. C., Arad Y., Deckelbaum R. J., Goldberg I. J. Lipoprotein lipase-mediated uptake and degradation of low density lipoproteins by fibroblasts and macrophages. J Clin Invest. 1992 Oct;90(4):1504–1512. doi: 10.1172/JCI116018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sattler W., Mohr D., Stocker R. Rapid isolation of lipoproteins and assessment of their peroxidation by high-performance liquid chromatography postcolumn chemiluminescence. Methods Enzymol. 1994;233:469–489. doi: 10.1016/s0076-6879(94)33053-0. [DOI] [PubMed] [Google Scholar]
- Sattler W., Puhl H., Hayn M., Kostner G. M., Esterbauer H. Determination of fatty acids in the main lipoprotein classes by capillary gas chromatography: BF3/methanol transesterification of lyophilized samples instead of Folch extraction gives higher yields. Anal Biochem. 1991 Oct;198(1):184–190. doi: 10.1016/0003-2697(91)90526-y. [DOI] [PubMed] [Google Scholar]
- Skottova N., Savonen R., Lookene A., Hultin M., Olivecrona G. Lipoprotein lipase enhances removal of chylomicrons and chylomicron remnants by the perfused rat liver. J Lipid Res. 1995 Jun;36(6):1334–1344. [PubMed] [Google Scholar]
- Stein O., Halperin G., Leitersdorf E., Olivecrona T., Stein Y. Lipoprotein lipase mediated uptake of non-degradable ether analogues of phosphatidylcholine and cholesteryl ester by cultured cells. Biochim Biophys Acta. 1984 Aug 15;795(1):47–59. doi: 10.1016/0005-2760(84)90103-6. [DOI] [PubMed] [Google Scholar]
- Stremmel W. Fatty acid uptake by isolated rat heart myocytes represents a carrier-mediated transport process. J Clin Invest. 1988 Mar;81(3):844–852. doi: 10.1172/JCI113393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi S., Suzuki J., Kohno M., Oida K., Tamai T., Miyabo S., Yamamoto T., Nakai T. Enhancement of the binding of triglyceride-rich lipoproteins to the very low density lipoprotein receptor by apolipoprotein E and lipoprotein lipase. J Biol Chem. 1995 Jun 30;270(26):15747–15754. doi: 10.1074/jbc.270.26.15747. [DOI] [PubMed] [Google Scholar]
- Thomas P. K., Cooper J. M., King R. H., Workman J. M., Schapira A. H., Goss-Sampson M. A., Muller D. P. Myopathy in vitamin E deficient rats: muscle fibre necrosis associated with disturbances of mitochondrial function. J Anat. 1993 Dec;183(Pt 3):451–461. [PMC free article] [PubMed] [Google Scholar]
- Traber M. G., Burton G. W., Ingold K. U., Kayden H. J. RRR- and SRR-alpha-tocopherols are secreted without discrimination in human chylomicrons, but RRR-alpha-tocopherol is preferentially secreted in very low density lipoproteins. J Lipid Res. 1990 Apr;31(4):675–685. [PubMed] [Google Scholar]
- Traber M. G. Determinants of plasma vitamin E concentrations. Free Radic Biol Med. 1994 Feb;16(2):229–239. doi: 10.1016/0891-5849(94)90148-1. [DOI] [PubMed] [Google Scholar]
- Traber M. G., Kayden H. J. Vitamin E is delivered to cells via the high affinity receptor for low-density lipoprotein. Am J Clin Nutr. 1984 Oct;40(4):747–751. doi: 10.1093/ajcn/40.4.747. [DOI] [PubMed] [Google Scholar]
- Traber M. G., Olivecrona T., Kayden H. J. Bovine milk lipoprotein lipase transfers tocopherol to human fibroblasts during triglyceride hydrolysis in vitro. J Clin Invest. 1985 May;75(5):1729–1734. doi: 10.1172/JCI111883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Traber M. G., Sokol R. J., Kohlschütter A., Yokota T., Muller D. P., Dufour R., Kayden H. J. Impaired discrimination between stereoisomers of alpha-tocopherol in patients with familial isolated vitamin E deficiency. J Lipid Res. 1993 Feb;34(2):201–210. [PubMed] [Google Scholar]
- Turrens J. F., Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980 Nov 1;191(2):421–427. doi: 10.1042/bj1910421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wetzel M. G., Scow R. O. Lipolysis and fatty acid transport in rat heart: electron microscopic study. Am J Physiol. 1984 May;246(5 Pt 1):C467–C485. doi: 10.1152/ajpcell.1984.246.5.C467. [DOI] [PubMed] [Google Scholar]
- Williams K. J., Fless G. M., Petrie K. A., Snyder M. L., Brocia R. W., Swenson T. L. Mechanisms by which lipoprotein lipase alters cellular metabolism of lipoprotein(a), low density lipoprotein, and nascent lipoproteins. Roles for low density lipoprotein receptors and heparan sulfate proteoglycans. J Biol Chem. 1992 Jul 5;267(19):13284–13292. [PubMed] [Google Scholar]
- Williams S. E., Inoue I., Tran H., Fry G. L., Pladet M. W., Iverius P. H., Lalouel J. M., Chappell D. A., Strickland D. K. The carboxyl-terminal domain of lipoprotein lipase binds to the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor (LRP) and mediates binding of normal very low density lipoproteins to LRP. J Biol Chem. 1994 Mar 25;269(12):8653–8658. [PubMed] [Google Scholar]
- Zechner R. Rapid and simple isolation procedure for lipoprotein lipase from human milk. Biochim Biophys Acta. 1990 May 1;1044(1):20–25. doi: 10.1016/0005-2760(90)90213-h. [DOI] [PubMed] [Google Scholar]
- del Río L. A., Sandalio L. M., Palma J. M., Bueno P., Corpas F. J. Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radic Biol Med. 1992 Nov;13(5):557–580. doi: 10.1016/0891-5849(92)90150-f. [DOI] [PubMed] [Google Scholar]