Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Aug 15;318(Pt 1):67–73. doi: 10.1042/bj3180067

Characterization of a ferritin mRNA from Arabidopsis thaliana accumulated in response to iron through an oxidative pathway independent of abscisic acid.

F Gaymard 1, J Boucherez 1, J F Briat 1
PMCID: PMC1217590  PMID: 8761454

Abstract

A ferritin cDNA, AtFer1, from seedlings of Arabidopsis thaliana has been characterized. The deduced amino acid sequence of the AtFer1 protein indicates that A. thaliana ferritin shares the same characteristics as the plant ferritin already characterized from the Leguminosae and Graminacea families: (i) it contains an additional sequence in its N-terminal part composed of two domains: a transit peptide responsible for plastid targeting and an extension peptide; (ii) amino acids that form the ferroxidase centre of H-type animal ferritin, as well as Glu residues characteristic of L-type animal ferritin, are conserved in AtFer1; (iii) the C-terminal part of the A. thaliana ferritin subunit defining the E-helix is divergent from its animal counterpart, and confirms that 4-fold-symmetry axis channels are hydrophilic in plant ferritin. Southern blot experiments indicate that AtFer1 is likely to be encoded by a unique gene in the A. thaliana genome, although a search in the NCBI dbEST database indicates that other ferritin genes, divergent from AtFer1, may exist. Iron loading of A. thaliana plantlets increased ferritin mRNA and protein abundance. In contrast to maize, the transcript abundance of a gene responding to abscisic acid (RAB18) did not increase in response to iron loading treatment, and A. thaliana ferritin mRNA abundance is not accumulated in response to a treatment with exogenous abscisic acid, at least in the culture system used in this study. In addition, iron-induced increases in ferritin mRNA abundance were the same as wild-type plants in abi1 and abi2 mutants of A. thaliana, both affected in the abscisic acid response in vegetative tissues. Increased AtFer1 transcript abundance in response to iron is inhibited by the antioxidant N-acetylcysteine. These results indicate that an oxidative pathway, independent of abscisic acid, could be responsible for the iron induction of ferritin synthesis in A. thaliana.

Full Text

The Full Text of this article is available as a PDF (630.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews S. C., Arosio P., Bottke W., Briat J. F., von Darl M., Harrison P. M., Laulhère J. P., Levi S., Lobreaux S., Yewdall S. J. Structure, function, and evolution of ferritins. J Inorg Biochem. 1992 Aug 15;47(3-4):161–174. doi: 10.1016/0162-0134(92)84062-r. [DOI] [PubMed] [Google Scholar]
  2. Boyd D., Vecoli C., Belcher D. M., Jain S. K., Drysdale J. W. Structural and functional relationships of human ferritin H and L chains deduced from cDNA clones. J Biol Chem. 1985 Sep 25;260(21):11755–11761. [PubMed] [Google Scholar]
  3. Cairo G., Bardella L., Schiaffonati L., Arosio P., Levi S., Bernelli-Zazzera A. Multiple mechanisms of iron-induced ferritin synthesis in HeLa cells. Biochem Biophys Res Commun. 1985 Nov 27;133(1):314–321. doi: 10.1016/0006-291x(85)91877-7. [DOI] [PubMed] [Google Scholar]
  4. Dickey L. F., Sreedharan S., Theil E. C., Didsbury J. R., Wang Y. H., Kaufman R. E. Differences in the regulation of messenger RNA for housekeeping and specialized-cell ferritin. A comparison of three distinct ferritin complementary DNAs, the corresponding subunits, and identification of the first processed in amphibia. J Biol Chem. 1987 Jun 5;262(16):7901–7907. [PubMed] [Google Scholar]
  5. Fobis-Loisy I., Loridon K., Lobréaux S., Lebrun M., Briat J. F. Structure and differential expression of two maize ferritin genes in response to iron and abscisic acid. Eur J Biochem. 1995 Aug 1;231(3):609–619. doi: 10.1111/j.1432-1033.1995.tb20739.x. [DOI] [PubMed] [Google Scholar]
  6. Giraudat J. Abscisic acid signaling. Curr Opin Cell Biol. 1995 Apr;7(2):232–238. doi: 10.1016/0955-0674(95)80033-6. [DOI] [PubMed] [Google Scholar]
  7. Giraudat J., Parcy F., Bertauche N., Gosti F., Leung J., Morris P. C., Bouvier-Durand M., Vartanian N. Current advances in abscisic acid action and signalling. Plant Mol Biol. 1994 Dec;26(5):1557–1577. doi: 10.1007/BF00016490. [DOI] [PubMed] [Google Scholar]
  8. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  9. Heusterspreute M., Crichton R. R. Amino acid sequence of horse spleen apoferritin. FEBS Lett. 1981 Jul 6;129(2):322–327. doi: 10.1016/0014-5793(81)80193-7. [DOI] [PubMed] [Google Scholar]
  10. Klausner R. D., Rouault T. A., Harford J. B. Regulating the fate of mRNA: the control of cellular iron metabolism. Cell. 1993 Jan 15;72(1):19–28. doi: 10.1016/0092-8674(93)90046-s. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Laulhere J. P., Laboure A. M., Briat J. F. Mechanism of the transition from plant ferritin to phytosiderin. J Biol Chem. 1989 Feb 25;264(6):3629–3635. [PubMed] [Google Scholar]
  13. Laulhere J. P., Lescure A. M., Briat J. F. Purification and characterization of ferritins from maize, pea, and soya bean seeds. Distribution in various pea organs. J Biol Chem. 1988 Jul 25;263(21):10289–10294. [PubMed] [Google Scholar]
  14. Lawson D. M., Artymiuk P. J., Yewdall S. J., Smith J. M., Livingstone J. C., Treffry A., Luzzago A., Levi S., Arosio P., Cesareni G. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature. 1991 Feb 7;349(6309):541–544. doi: 10.1038/349541a0. [DOI] [PubMed] [Google Scholar]
  15. Lescure A. M., Proudhon D., Pesey H., Ragland M., Theil E. C., Briat J. F. Ferritin gene transcription is regulated by iron in soybean cell cultures. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8222–8226. doi: 10.1073/pnas.88.18.8222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leung J., Bouvier-Durand M., Morris P. C., Guerrier D., Chefdor F., Giraudat J. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science. 1994 Jun 3;264(5164):1448–1452. doi: 10.1126/science.7910981. [DOI] [PubMed] [Google Scholar]
  17. Lobreaux S., Briat J. F. Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development. Biochem J. 1991 Mar 1;274(Pt 2):601–606. doi: 10.1042/bj2740601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lobreaux S., Massenet O., Briat J. F. Iron induces ferritin synthesis in maize plantlets. Plant Mol Biol. 1992 Jul;19(4):563–575. doi: 10.1007/BF00026783. [DOI] [PubMed] [Google Scholar]
  19. Lobreaux S., Yewdall S. J., Briat J. F., Harrison P. M. Amino-acid sequence and predicted three-dimensional structure of pea seed (Pisum sativum) ferritin. Biochem J. 1992 Dec 15;288(Pt 3):931–939. doi: 10.1042/bj2880931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lobréaux S., Hardy T., Briat J. F. Abscisic acid is involved in the iron-induced synthesis of maize ferritin. EMBO J. 1993 Feb;12(2):651–657. doi: 10.1002/j.1460-2075.1993.tb05698.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lång V., Palva E. T. The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol Biol. 1992 Dec;20(5):951–962. doi: 10.1007/BF00027165. [DOI] [PubMed] [Google Scholar]
  22. Lütcke H. A., Chow K. C., Mickel F. S., Moss K. A., Kern H. F., Scheele G. A. Selection of AUG initiation codons differs in plants and animals. EMBO J. 1987 Jan;6(1):43–48. doi: 10.1002/j.1460-2075.1987.tb04716.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Meyer K., Leube M. P., Grill E. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science. 1994 Jun 3;264(5164):1452–1455. doi: 10.1126/science.8197457. [DOI] [PubMed] [Google Scholar]
  24. Proudhon D., Wei J., Briat J., Theil E. C. Ferritin gene organization: differences between plants and animals suggest possible kingdom-specific selective constraints. J Mol Evol. 1996 Mar;42(3):325–336. doi: 10.1007/BF02337543. [DOI] [PubMed] [Google Scholar]
  25. Ragland M., Briat J. F., Gagnon J., Laulhere J. P., Massenet O., Theil E. C. Evidence for conservation of ferritin sequences among plants and animals and for a transit peptide in soybean. J Biol Chem. 1990 Oct 25;265(30):18339–18344. [PubMed] [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  28. Skriver K., Mundy J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell. 1990 Jun;2(6):503–512. doi: 10.1105/tpc.2.6.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Spence M. J., Henzl M. T., Lammers P. J. The structure of a Phaseolus vulgaris cDNA encoding the iron storage protein ferritin. Plant Mol Biol. 1991 Sep;17(3):499–504. doi: 10.1007/BF00040644. [DOI] [PubMed] [Google Scholar]
  30. Theil E. C. Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem. 1987;56:289–315. doi: 10.1146/annurev.bi.56.070187.001445. [DOI] [PubMed] [Google Scholar]
  31. Van Wuytswinkel O., Savino G., Briat J. F. Purification and characterization of recombinant pea-seed ferritins expressed in Escherichia coli: influence of N-terminus deletions on protein solubility and core formation in vitro. Biochem J. 1995 Jan 1;305(Pt 1):253–261. doi: 10.1042/bj3050253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. White K., Munro H. N. Induction of ferritin subunit synthesis by iron is regulated at both the transcriptional and translational levels. J Biol Chem. 1988 Jun 25;263(18):8938–8942. [PubMed] [Google Scholar]
  33. Wicks R. E., Entsch B. Functional genes found for three different plant ferritin subunits in the legume, Vigna unguiculata. Biochem Biophys Res Commun. 1993 Apr 30;192(2):813–819. doi: 10.1006/bbrc.1993.1487. [DOI] [PubMed] [Google Scholar]
  34. van Wuytswinkel O., Briat J. F. Conformational changes and in vitro core-formation modifications induced by site-directed mutagenesis of the specific N-terminus of pea seed ferritin. Biochem J. 1995 Feb 1;305(Pt 3):959–965. doi: 10.1042/bj3050959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. van der Mark F., van den Briel W., Huisman H. G. Phytoferritin is synthesized in vitro as a high-molecular-weight precursor. Studies on the synthesis and the uptake in vitro of the precursors of ferritin and ferredoxin by intact chloroplasts. Biochem J. 1983 Sep 15;214(3):943–950. doi: 10.1042/bj2140943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. von Heijne G., Steppuhn J., Herrmann R. G. Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem. 1989 Apr 1;180(3):535–545. doi: 10.1111/j.1432-1033.1989.tb14679.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES