Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Aug 15;318(Pt 1):85–92. doi: 10.1042/bj3180085

Effects of insulin on the regulation of branched-chain alpha-keto acid dehydrogenase E1 alpha subunit gene expression.

P A Costeas 1, J M Chinsky 1
PMCID: PMC1217592  PMID: 8761456

Abstract

Alterations in dietary intake, especially of protein, may produce changes in the hepatic levels of the branched-chain alpha-keto acid dehydrogenase (BCKAD) complex. The possible role of insulin in the regulation of these observed changes in hepatic capacity for BCKAD expression was therefore examined. Steady-state RNA levels encoding three of the subunits, E1 alpha, E1 beta and E2, increased by 2-4-fold in the livers of mice starved for 3 days, a known hypoinsulinaemic state. In contrast, the levels of E1 beta and E2, but not E1 alpha, RNA were decreased when mice were fed 0% protein diets compared with the levels observed in mice fed standard (23%) or higher protein isocaloric diets. BCKAD subunit protein levels under these conditions changed co-ordinately even though the changes in RNA were not co-ordinate. The effects of hormonal changes that might be associated with these dietary changes were examined, using the rodent hepatoma cell line H4IIEC3. In these cells, the levels of E1 alpha protein and mRNA were significantly depressed in the presence of insulin. In contrast, the levels of E1 beta and E2 RNAs were not decreased by insulin. The half-lives of the E1 alpha and E2 RNAs were determined to be quite long, from 13 to 18 h, with insulin having no dramatic overall effect on the half-lives determined over 24 h. Therefore, it is likely that insulin directly affects the transcription of the E1 alpha gene rather than RNA stability in exerting its negative regulatory effect. This effect is specific to the E1 alpha subunit. The differences in BCKAD subunit RNA levels observed under various nutritional and developmental conditions may therefore be the result of the differential effects of insulin and other hormones on the multiple regulatory mechanisms modulating BCKAD subunit expression.

Full Text

The Full Text of this article is available as a PDF (573.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Block K. P., Aftring R. P., Buse M. G. Regulation of rat liver branched-chain alpha-keto acid dehydrogenase activity by meal frequency and dietary protein. J Nutr. 1990 Jul;120(7):793–799. doi: 10.1093/jn/120.7.793. [DOI] [PubMed] [Google Scholar]
  2. Chicco A. G., Adibi S. A., Liu W. Q., Morris S. M., Jr, Paul H. S. Regulation of gene expression of branched-chain keto acid dehydrogenase complex in primary cultured hepatocytes by dexamethasone and a cAMP analog. J Biol Chem. 1994 Jul 29;269(30):19427–19434. [PubMed] [Google Scholar]
  3. Chinsky J. M., Bohlen L. M., Costeas P. A. Noncoordinated responses of branched-chain alpha-ketoacid dehydrogenase subunit genes to dietary protein. FASEB J. 1994 Jan;8(1):114–120. doi: 10.1096/fasebj.8.1.7507870. [DOI] [PubMed] [Google Scholar]
  4. Chinsky J. M., Costeas P. A. Molecular cloning and analysis of the expression of the E1 beta subunit of branched chain alpha-ketoacid dehydrogenase in mice. Biochim Biophys Acta. 1993 Dec 14;1216(3):499–503. doi: 10.1016/0167-4781(93)90023-7. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Cook K. G., Bradford A. P., Yeaman S. J., Aitken A., Fearnley I. M., Walker J. E. Regulation of bovine kidney branched-chain 2-oxoacid dehydrogenase complex by reversible phosphorylation. Eur J Biochem. 1984 Dec 17;145(3):587–591. doi: 10.1111/j.1432-1033.1984.tb08597.x. [DOI] [PubMed] [Google Scholar]
  7. Costeas P. A., Tonelli L. A., Chinsky J. M. Molecular cloning of the murine branched chain alpha-ketoacid dehydrogenase E2 subunit: presence of 3' B1 repeat elements. Biochim Biophys Acta. 1996 Feb 7;1305(1-2):25–28. doi: 10.1016/0167-4781(95)00212-x. [DOI] [PubMed] [Google Scholar]
  8. Damuni Z., Reed L. J. Purification and properties of the catalytic subunit of the branched-chain alpha-keto acid dehydrogenase phosphatase from bovine kidney mitochondria. J Biol Chem. 1987 Apr 15;262(11):5129–5132. [PubMed] [Google Scholar]
  9. Fisher C. W., Chuang J. L., Griffin T. A., Lau K. S., Cox R. P., Chuang D. T. Molecular phenotypes in cultured maple syrup urine disease cells. Complete E1 alpha cDNA sequence and mRNA and subunit contents of the human branched chain alpha-keto acid dehydrogenase complex. J Biol Chem. 1989 Feb 25;264(6):3448–3453. [PubMed] [Google Scholar]
  10. Harper A. E., Miller R. H., Block K. P. Branched-chain amino acid metabolism. Annu Rev Nutr. 1984;4:409–454. doi: 10.1146/annurev.nu.04.070184.002205. [DOI] [PubMed] [Google Scholar]
  11. Harpold M. M., Evans R. M., Salditt-Georgieff M., Darnell J. E. Production of mRNA in Chinese hamster cells: relationship of the rate of synthesis to the cytoplasmic concentration of nine specific mRNA sequences. Cell. 1979 Aug;17(4):1025–1035. doi: 10.1016/0092-8674(79)90341-6. [DOI] [PubMed] [Google Scholar]
  12. Harris R. A., Powell S. M., Paxton R., Gillim S. E., Nagae H. Physiological covalent regulation of rat liver branched-chain alpha-ketoacid dehydrogenase. Arch Biochem Biophys. 1985 Dec;243(2):542–555. doi: 10.1016/0003-9861(85)90531-4. [DOI] [PubMed] [Google Scholar]
  13. Harris R. A., Zhang B., Goodwin G. W., Kuntz M. J., Shimomura Y., Rougraff P., Dexter P., Zhao Y., Gibson R., Crabb D. W. Regulation of the branched-chain alpha-ketoacid dehydrogenase and elucidation of a molecular basis for maple syrup urine disease. Adv Enzyme Regul. 1990;30:245–263. doi: 10.1016/0065-2571(90)90021-s. [DOI] [PubMed] [Google Scholar]
  14. Husson A., Renouf S., Fairand A., Buquet C., Benamar M., Vaillant R. Expression of argininosuccinate lyase mRNA in foetal hepatocytes. Regulation by glucocorticoids and insulin. Eur J Biochem. 1990 Sep 24;192(3):677–681. doi: 10.1111/j.1432-1033.1990.tb19275.x. [DOI] [PubMed] [Google Scholar]
  15. Jones S. M., Yeaman S. J. Phosphorylation of branched-chain 2-oxo acid dehydrogenase complex in isolated adipocytes. Effects of 2-oxo acids. Biochem J. 1986 May 15;236(1):209–213. doi: 10.1042/bj2360209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kedishvili N. Y., Popov K. M., Jaskiewicz J. A., Harris R. A. Coordinated expression of valine catabolic enzymes during adipogenesis: analysis of activity, mRNA, protein levels, and metabolic consequences. Arch Biochem Biophys. 1994 Dec;315(2):317–322. doi: 10.1006/abbi.1994.1506. [DOI] [PubMed] [Google Scholar]
  17. Lambert M. A., Simard L. R., Ray P. N., McInnes R. R. Molecular cloning of cDNA for rat argininosuccinate lyase and its expression in rat hepatoma cell lines. Mol Cell Biol. 1986 May;6(5):1722–1728. doi: 10.1128/mcb.6.5.1722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MacDonald M. J., McKenzie D. I., Kaysen J. H., Walker T. M., Moran S. M., Fahien L. A., Towle H. C. Glucose regulates leucine-induced insulin release and the expression of the branched chain ketoacid dehydrogenase E1 alpha subunit gene in pancreatic islets. J Biol Chem. 1991 Jan 15;266(2):1335–1340. [PubMed] [Google Scholar]
  19. McKean M. C., Winkeler K. A., Danner D. J. Nucleotide sequence of the 5' end including the initiation codon of cDNA for the E1 alpha subunit of the human branched chain alpha-ketoacid dehydrogenase complex. Biochim Biophys Acta. 1992 Nov 15;1171(1):109–112. doi: 10.1016/0167-4781(92)90149-t. [DOI] [PubMed] [Google Scholar]
  20. Miller R. H., Eisenstein R. S., Harper A. E. Effects of dietary protein intake on branched-chain keto acid dehydrogenase activity of the rat. Immunochemical analysis of the enzyme complex. J Biol Chem. 1988 Mar 5;263(7):3454–3461. [PubMed] [Google Scholar]
  21. Morris S. M., Jr, Moncman C. L., Rand K. D., Dizikes G. J., Cederbaum S. D., O'Brien W. E. Regulation of mRNA levels for five urea cycle enzymes in rat liver by diet, cyclic AMP, and glucocorticoids. Arch Biochem Biophys. 1987 Jul;256(1):343–353. doi: 10.1016/0003-9861(87)90455-3. [DOI] [PubMed] [Google Scholar]
  22. Morris S. M., Jr Regulation of enzymes of urea and arginine synthesis. Annu Rev Nutr. 1992;12:81–101. doi: 10.1146/annurev.nu.12.070192.000501. [DOI] [PubMed] [Google Scholar]
  23. Patston P. A., Espinal J., Shaw J. M., Randle P. J. Rat tissue concentrations of branched-chain 2-oxo acid dehydrogenase complex. Re-evaluation by immunoassay and bioassay. Biochem J. 1986 Apr 15;235(2):429–434. doi: 10.1042/bj2350429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Paxton R., Kuntz M., Harris R. A. Phosphorylation sites and inactivation of branched-chain alpha-ketoacid dehydrogenase isolated from rat heart, bovine kidney, and rabbit liver, kidney, heart, brain, and skeletal muscle. Arch Biochem Biophys. 1986 Jan;244(1):187–201. doi: 10.1016/0003-9861(86)90108-6. [DOI] [PubMed] [Google Scholar]
  25. Popov K. M., Zhao Y., Shimomura Y., Jaskiewicz J., Kedishvili N. Y., Irwin J., Goodwin G. W., Harris R. A. Dietary control and tissue specific expression of branched-chain alpha-ketoacid dehydrogenase kinase. Arch Biochem Biophys. 1995 Jan 10;316(1):148–154. doi: 10.1006/abbi.1995.1022. [DOI] [PubMed] [Google Scholar]
  26. Putowski L. T., Choi D., Mordacq J., Scherzer W. J., Mayo K. E., Adashi E. Y., Rohan R. M. In vivo hormonal regulation of insulin-like growth factor binding protein-5 mRNA in the immature rat ovary. J Soc Gynecol Investig. 1995 Nov-Dec;2(6):735–742. [PubMed] [Google Scholar]
  27. Reed L. J., Hackert M. L. Structure-function relationships in dihydrolipoamide acyltransferases. J Biol Chem. 1990 Jun 5;265(16):8971–8974. [PubMed] [Google Scholar]
  28. Renouf S., Buquet C., Fairand A., Benamar M., Husson A. Changes in levels of argininosuccinate lyase mRNA during induction by glucagon and cyclic AMP in cultured foetal-rat hepatocytes. Biochem J. 1993 Apr 15;291(Pt 2):609–613. doi: 10.1042/bj2910609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Shimomura Y., Fujii H., Suzuki M., Fujitsuka N., Naoi M., Sugiyama S., Harris R. A. Branched-chain 2-oxo acid dehydrogenase complex activation by tetanic contractions in rat skeletal muscle. Biochim Biophys Acta. 1993 Jul 11;1157(3):290–296. doi: 10.1016/0304-4165(93)90112-l. [DOI] [PubMed] [Google Scholar]
  30. Soemitro S., Block K. P., Crowell P. L., Harper A. E. Activities of branched-chain amino acid--degrading enzymes in liver from rats fed different dietary levels of protein. J Nutr. 1989 Aug;119(8):1203–1212. doi: 10.1093/jn/119.8.1203. [DOI] [PubMed] [Google Scholar]
  31. Solomon M., Cook K. G., Yeaman S. J. Effect of diet and starvation on the activity state of branched-chain 2-oxo-acid dehydrogenase complex in rat liver and heart. Biochim Biophys Acta. 1987 Dec 10;931(3):335–338. doi: 10.1016/0167-4889(87)90224-2. [DOI] [PubMed] [Google Scholar]
  32. Starr R., Xiao J., Monteiro M. J. Production of monoclonal antibodies against neurofilament-associated proteins: demonstration of association with neurofilaments by a coimmunoprecipitation method. J Neurochem. 1995 Apr;64(4):1860–1867. doi: 10.1046/j.1471-4159.1995.64041860.x. [DOI] [PubMed] [Google Scholar]
  33. Su T. S., Bock H. G., O'Brien W. E., Beaudet A. L. Cloning of cDNA for argininosuccinate synthetase mRNA and study of enzyme overproduction in a human cell line. J Biol Chem. 1981 Nov 25;256(22):11826–11831. [PubMed] [Google Scholar]
  34. Suzuki K., Olvera J., Wool I. G. Primary structure of rat ribosomal protein S2. A ribosomal protein with arginine-glycine tandem repeats and RGGF motifs that are associated with nucleolar localization and binding to ribonucleic acids. J Biol Chem. 1991 Oct 25;266(30):20007–20010. [PubMed] [Google Scholar]
  35. Ulbright C., Snodgrass P. J. Coordinate induction of the urea cycle enzymes by glucagon and dexamethasone is accomplished by three different mechanisms. Arch Biochem Biophys. 1993 Mar;301(2):237–243. doi: 10.1006/abbi.1993.1139. [DOI] [PubMed] [Google Scholar]
  36. Wagenmakers A. J., Schepens J. T., Veerkamp J. H. Effect of starvation and exercise on actual and total activity of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues. Biochem J. 1984 Nov 1;223(3):815–821. doi: 10.1042/bj2230815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zhang B., Kuntz M. J., Goodwin G. W., Harris R. A., Crabb D. W. Molecular cloning of a cDNA for the E1 alpha subunit of rat liver branched chain alpha-ketoacid dehydrogenase. J Biol Chem. 1987 Nov 5;262(31):15220–15224. [PubMed] [Google Scholar]
  38. Zhao Y., Denne S. C., Harris R. A. Developmental pattern of branched-chain 2-oxo acid dehydrogenase complex in rat liver and heart. Biochem J. 1993 Mar 1;290(Pt 2):395–399. doi: 10.1042/bj2900395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zhao Y., Popov K. M., Shimomura Y., Kedishvili N. Y., Jaskiewicz J., Kuntz M. J., Kain J., Zhang B., Harris R. A. Effect of dietary protein on the liver content and subunit composition of the branched-chain alpha-ketoacid dehydrogenase complex. Arch Biochem Biophys. 1994 Feb 1;308(2):446–453. doi: 10.1006/abbi.1994.1063. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES