Abstract
The solution conformation of the homogeneous, heparin-derived tetrasaccharide delta UA2S(1-->4)-alpha-D-GlcNpS6S(1-->4)-alpha-L-IdoAp2S (1-->4)-alpha-D-GlcNpS6S (residues A, B, C and D respectively, where IdoA is iduronic acid) has been investigated by using 1H- and 13C-NMR. Ring conformations have been defined by J-coupling constants and inter-proton nuclear Overhauser effects (NOEs), and the orientation of one ring with respect to the other has been defined by inter-ring NOEs. NOE-based conformational modelling has been done by using the iterative relaxation matrix approach (IRMA), restrained molecular dynamics simulations and energy minimization to refine structures and to distinguish between minor structural differences and equilibria between various ring forms. Both glucosamine residues B and D are in the 4C1 chair conformation. The 6-O-sulphate group is oriented in the gauche-trans configuration in the D ring, whereas in the B ring the gauche-gauche rotomer predominates. Uronate (A) and iduronate (C) residues are mostly represented by 1H2 and 2S0 twisted boat forms, respectively, with small deviations in expected coupling constants and NOEs suggesting minor contributions from other A and C ring conformations.
Full Text
The Full Text of this article is available as a PDF (718.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Casu B. Structure and biological activity of heparin. Adv Carbohydr Chem Biochem. 1985;43:51–134. doi: 10.1016/s0065-2318(08)60067-0. [DOI] [PubMed] [Google Scholar]
- Daragan V. A., Mayo K. H. Tri- and diglycine backbone rotational dynamics investigated by 13C NMR multiplet relaxation and molecular dynamics simulations. Biochemistry. 1993 Nov 2;32(43):11488–11499. doi: 10.1021/bi00094a004. [DOI] [PubMed] [Google Scholar]
- Desai U. R., Wang H. M., Kelly T. R., Linhardt R. J. Structure elucidation of a novel acidic tetrasaccharide and hexasaccharide derived from a chemically modified heparin. Carbohydr Res. 1993 Mar 17;241:249–259. doi: 10.1016/0008-6215(93)80112-r. [DOI] [PubMed] [Google Scholar]
- Faham S., Hileman R. E., Fromm J. R., Linhardt R. J., Rees D. C. Heparin structure and interactions with basic fibroblast growth factor. Science. 1996 Feb 23;271(5252):1116–1120. doi: 10.1126/science.271.5252.1116. [DOI] [PubMed] [Google Scholar]
- Ferro D. R., Provasoli A., Ragazzi M., Casu B., Torri G., Bossennec V., Perly B., Sinaÿ P., Petitou M., Choay J. Conformer populations of L-iduronic acid residues in glycosaminoglycan sequences. Carbohydr Res. 1990 Jan 15;195(2):157–167. doi: 10.1016/0008-6215(90)84164-p. [DOI] [PubMed] [Google Scholar]
- Gettins P., Horne A. P. One- and two-dimensional 13C-n.m.r. characterization of two series of oligosaccharides derived from porcine intestinal mucosal heparin by degradation with heparinase. Carbohydr Res. 1992 Jan;223:81–98. doi: 10.1016/0008-6215(92)80008-o. [DOI] [PubMed] [Google Scholar]
- Habuchi H., Suzuki S., Saito T., Tamura T., Harada T., Yoshida K., Kimata K. Structure of a heparan sulphate oligosaccharide that binds to basic fibroblast growth factor. Biochem J. 1992 Aug 1;285(Pt 3):805–813. doi: 10.1042/bj2850805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horne A., Gettins P. 1H-N.m.r. spectral assignments for two series of heparin-derived oligosaccharides. Carbohydr Res. 1992 Feb 17;225(1):43–57. doi: 10.1016/0008-6215(92)80038-3. [DOI] [PubMed] [Google Scholar]
- Huckerby T. N., Sanderson P. N., Nieduszynski I. A. N.m.r. studies of the disulphated disaccharide obtained by degradation of bovine lung heparin with nitrous acid. Carbohydr Res. 1985 May 15;138(2):199–206. doi: 10.1016/0008-6215(85)85103-x. [DOI] [PubMed] [Google Scholar]
- Jeanloz R. W. The chemistry of heparin. Adv Exp Med Biol. 1975;52:3–17. doi: 10.1007/978-1-4684-0946-8_1. [DOI] [PubMed] [Google Scholar]
- Linhardt R. J., Rice K. G., Kim Y. S., Lohse D. L., Wang H. M., Loganathan D. Mapping and quantification of the major oligosaccharide components of heparin. Biochem J. 1988 Sep 15;254(3):781–787. doi: 10.1042/bj2540781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linker A., Hovingh P. Structural studies on heparin. Tetrasaccharides obtained by heparinase degradation. Carbohydr Res. 1984 Apr 2;127(1):75–94. doi: 10.1016/0008-6215(84)85107-1. [DOI] [PubMed] [Google Scholar]
- Loganathan D., Wang H. M., Mallis L. M., Linhardt R. J. Structural variation in the antithrombin III binding site region and its occurrence in heparin from different sources. Biochemistry. 1990 May 8;29(18):4362–4368. doi: 10.1021/bi00470a015. [DOI] [PubMed] [Google Scholar]
- Ludwigs U., Elgavish A., Esko J. D., Meezan E., Rodén L. Reaction of unsaturated uronic acid residues with mercuric salts. Cleavage of the hyaluronic acid disaccharide 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-D-glucose. Biochem J. 1987 Aug 1;245(3):795–804. doi: 10.1042/bj2450795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lyon M., Deakin J. A., Mizuno K., Nakamura T., Gallagher J. T. Interaction of hepatocyte growth factor with heparan sulfate. Elucidation of the major heparan sulfate structural determinants. J Biol Chem. 1994 Apr 15;269(15):11216–11223. [PubMed] [Google Scholar]
- Maccarana M., Casu B., Lindahl U. Minimal sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor. J Biol Chem. 1993 Nov 15;268(32):23898–23905. [PubMed] [Google Scholar]
- Mach H., Volkin D. B., Burke C. J., Middaugh C. R., Linhardt R. J., Fromm J. R., Loganathan D., Mattsson L. Nature of the interaction of heparin with acidic fibroblast growth factor. Biochemistry. 1993 May 25;32(20):5480–5489. doi: 10.1021/bi00071a026. [DOI] [PubMed] [Google Scholar]
- Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
- Merchant Z. M., Kim Y. S., Rice K. G., Linhardt R. J. Structure of heparin-derived tetrasaccharides. Biochem J. 1985 Jul 15;229(2):369–377. doi: 10.1042/bj2290369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mulloy B., Forster M. J., Jones C., Davies D. B. N.m.r. and molecular-modelling studies of the solution conformation of heparin. Biochem J. 1993 Aug 1;293(Pt 3):849–858. doi: 10.1042/bj2930849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perlin A. S., Mackie D. M., Dietrich C. P. Evidence for a (1 leads to 4)-linked 4-O-( -L-idopyranosyluronic acid 2-sulfate)-(2-deoxy-2-sulfoamino-D-glucopyranosyl 6-sulfate) sequence in heparin. Long-range H-H coupling in 4-deoxy-hex-4-enopyranosides. Carbohydr Res. 1971 Jun;18(2):185–194. doi: 10.1016/s0008-6215(00)80341-9. [DOI] [PubMed] [Google Scholar]
- Pervin A., Gallo C., Jandik K. A., Han X. J., Linhardt R. J. Preparation and structural characterization of large heparin-derived oligosaccharides. Glycobiology. 1995 Feb;5(1):83–95. doi: 10.1093/glycob/5.1.83. [DOI] [PubMed] [Google Scholar]
- Torri G., Casu B., Gatti G., Petitou M., Choay J., Jacquinet J. C., Sinaÿ P. Mono- and bidimensional 500 MHz 1H-NMR spectra of a synthetic pentasaccharide corresponding to the binding sequence of heparin to antithrombin-III: evidence for conformational peculiarity of the sulfated iduronate residue. Biochem Biophys Res Commun. 1985 Apr 16;128(1):134–140. doi: 10.1016/0006-291x(85)91655-9. [DOI] [PubMed] [Google Scholar]
- Turnbull J. E., Fernig D. G., Ke Y., Wilkinson M. C., Gallagher J. T. Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate. J Biol Chem. 1992 May 25;267(15):10337–10341. [PubMed] [Google Scholar]
- Tyrrell D. J., Ishihara M., Rao N., Horne A., Kiefer M. C., Stauber G. B., Lam L. H., Stack R. J. Structure and biological activities of a heparin-derived hexasaccharide with high affinity for basic fibroblast growth factor. J Biol Chem. 1993 Mar 5;268(7):4684–4689. [PubMed] [Google Scholar]