Abstract
Sorbitol dehydrogenase (SDH) is involved in the polyol pathway, which plays an important role in the pathogenesis of diabetic complications. We have measured the tissue distributions of SDH mRNA, both the immunoreactive enzyme levels and the enzyme activity. SDH mRNA was especially abundant in liver, kidney and testis. Both the activity and enzyme content are high in liver and kidney but not in testis. The discrepancy between mRNA and immunoreactive enzyme levels and the activity of SDH observed in testis was also seen in livers of streptozotocin-induced diabetic rats. SDH was found to exist in both glycated and non-glycated forms, with larger amounts of the glycated protein in the diabetic liver. Moreover, after incubation of purified enzyme with glucose or fructose, its activity was markedly decreased. These results indicate that glycation causes a decrease in SDH activity in liver under diabetic conditions. The same post-transcriptional event might occur to decrease the activity of SDH in testis in normal animals.
Full Text
The Full Text of this article is available as a PDF (339.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arai K., Iizuka S., Tada Y., Oikawa K., Taniguchi N. Increase in the glucosylated form of erythrocyte Cu-Zn-superoxide dismutase in diabetes and close association of the nonenzymatic glucosylation with the enzyme activity. Biochim Biophys Acta. 1987 May 19;924(2):292–296. doi: 10.1016/0304-4165(87)90025-0. [DOI] [PubMed] [Google Scholar]
- Arai K., Maguchi S., Fujii S., Ishibashi H., Oikawa K., Taniguchi N. Glycation and inactivation of human Cu-Zn-superoxide dismutase. Identification of the in vitro glycated sites. J Biol Chem. 1987 Dec 15;262(35):16969–16972. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Eklund H., Horjales E., Jörnvall H., Brändén C. I., Jeffery J. Molecular aspects of functional differences between alcohol and sorbitol dehydrogenases. Biochemistry. 1985 Dec 31;24(27):8005–8012. doi: 10.1021/bi00348a025. [DOI] [PubMed] [Google Scholar]
- Estonius M., Danielsson O., Karlsson C., Persson H., Jörnvall H., Hög J. O. Distribution of alcohol and sorbitol dehydrogenases. Assessment of mRNA species in mammalian tissues. Eur J Biochem. 1993 Jul 15;215(2):497–503. doi: 10.1111/j.1432-1033.1993.tb18059.x. [DOI] [PubMed] [Google Scholar]
- Fukuoka M., Tanimoto T., Zhou Y., Kawasaki N., Tanaka A., Ikemoto I., Machida T. Mechanism of testicular atrophy induced by di-n-butyl phthalate in rats. Part 1. J Appl Toxicol. 1989 Aug;9(4):277–283. doi: 10.1002/jat.2550090413. [DOI] [PubMed] [Google Scholar]
- Garner M. H., Bahador A., Sachs G. Nonenzymatic glycation of Na,K-ATPase. Effects on ATP hydrolysis and K+ occlusion. J Biol Chem. 1990 Sep 5;265(25):15058–15066. [PubMed] [Google Scholar]
- Hershko A., Ciechanover A. The ubiquitin system for protein degradation. Annu Rev Biochem. 1992;61:761–807. doi: 10.1146/annurev.bi.61.070192.003553. [DOI] [PubMed] [Google Scholar]
- Jeffery J., Jörnvall H. Sorbitol dehydrogenase. Adv Enzymol Relat Areas Mol Biol. 1988;61:47–106. doi: 10.1002/9780470123072.ch2. [DOI] [PubMed] [Google Scholar]
- Kaneto H., Fujii J., Suzuki K., Kasai H., Kawamori R., Kamada T., Taniguchi N. DNA cleavage induced by glycation of Cu,Zn-superoxide dismutase. Biochem J. 1994 Nov 15;304(Pt 1):219–225. doi: 10.1042/bj3040219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karlsson C., Jörnvall H., Hög J. O. Sorbitol dehydrogenase: cDNA coding for the rat enzyme. Variations within the alcohol dehydrogenase family independent of quaternary structure and metal content. Eur J Biochem. 1991 Jun 15;198(3):761–765. doi: 10.1111/j.1432-1033.1991.tb16077.x. [DOI] [PubMed] [Google Scholar]
- Kicic E., Palmer T. N. Is sorbitol dehydrogenase gene expression affected by streptozotocin-diabetes in the rat? Biochim Biophys Acta. 1994 May 25;1226(2):213–218. doi: 10.1016/0925-4439(94)90031-0. [DOI] [PubMed] [Google Scholar]
- Kondo T., Murakami K., Ohtsuka Y., Tsuji M., Gasa S., Taniguchi N., Kawakami Y. Estimation and characterization of glycosylated carbonic anhydrase I in erythrocytes from patients with diabetes mellitus. Clin Chim Acta. 1987 Jul 15;166(2-3):227–236. doi: 10.1016/0009-8981(87)90425-6. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lauwers A. M., Daumerie C., Henquin J. C. Intestinal absorption of sorbitol and effects of its acute administration on glucose homeostasis in normal rats. Br J Nutr. 1985 Jul;54(1):53–62. doi: 10.1079/bjn19850092. [DOI] [PubMed] [Google Scholar]
- Maret W., Auld D. S. Purification and characterization of human liver sorbitol dehydrogenase. Biochemistry. 1988 Mar 8;27(5):1622–1628. doi: 10.1021/bi00405a035. [DOI] [PubMed] [Google Scholar]
- Myint T., Hoshi S., Ookawara T., Miyazawa N., Suzuki K., Taniguchi N. Immunological detection of glycated proteins in normal and streptozotocin-induced diabetic rats using anti hexitol-lysine IgG. Biochim Biophys Acta. 1995 Oct 17;1272(2):73–79. doi: 10.1016/0925-4439(95)00067-e. [DOI] [PubMed] [Google Scholar]
- Ookawara T., Kawamura N., Kitagawa Y., Taniguchi N. Site-specific and random fragmentation of Cu,Zn-superoxide dismutase by glycation reaction. Implication of reactive oxygen species. J Biol Chem. 1992 Sep 15;267(26):18505–18510. [PubMed] [Google Scholar]
- Shilton B. H., Walton D. J. Sites of glycation of human and horse liver alcohol dehydrogenase in vivo. J Biol Chem. 1991 Mar 25;266(9):5587–5592. [PubMed] [Google Scholar]
- Suárez G., Rajaram R., Oronsky A. L., Gawinowicz M. A. Nonenzymatic glycation of bovine serum albumin by fructose (fructation). Comparison with the Maillard reaction initiated by glucose. J Biol Chem. 1989 Mar 5;264(7):3674–3679. [PubMed] [Google Scholar]
- Syrový I. Glycation of albumin: reaction with glucose, fructose, galactose, ribose or glyceraldehyde measured using four methods. J Biochem Biophys Methods. 1994 Mar;28(2):115–121. doi: 10.1016/0165-022x(94)90025-6. [DOI] [PubMed] [Google Scholar]
- Takahashi M., Lu Y. B., Myint T., Fujii J., Wada Y., Taniguchi N. In vivo glycation of aldehyde reductase, a major 3-deoxyglucosone reducing enzyme: identification of glycation sites. Biochemistry. 1995 Jan 31;34(4):1433–1438. doi: 10.1021/bi00004a038. [DOI] [PubMed] [Google Scholar]
- Tilton R. G., Chang K., Nyengaard J. R., Van den Enden M., Ido Y., Williamson J. R. Inhibition of sorbitol dehydrogenase. Effects on vascular and neural dysfunction in streptozocin-induced diabetic rats. Diabetes. 1995 Feb;44(2):234–242. doi: 10.2337/diab.44.2.234. [DOI] [PubMed] [Google Scholar]
