Abstract
Drosophila melanogaster angiotensin I-converting enzyme (AnCE) is a secreted single-domain homologue of mammalian angiotensin I-converting enzyme (ACE) which comprises two domains (N and C domains). In order to characterize in detail the enzymic properties of AnCE and to study the influence of glycosylation on the secretion and enzymic activity of this enzyme, we overexpressed AnCE (expression level, 160 mg/l) and an unglycosylated mutant (expression level, 43 mg/l) in the yeast Pichia pastoris. The recombinant enzyme was apparently homogeneous on SDS/PAGE without purification and partial deglycosylation demonstrated that all three potential sites for N-linked glycosylation were occupied by oligosaccharide chains. Each N-glycosylation sequence (Asn-Xaa-Ser/Thr) was disrupted by substituting a glutamine for the asparagine residue at amino acid positions 53, 196 and 311 by site-directed mutagenesis to produce a single mutant. Expression of the unglycosylated mutant in Pichia produced a secreted catalytically active enzyme (AnCE delta CHO). This mutant displayed unaltered kinetics for the hydrolyses of hippuryl-His-Leu, angiotensin 1 and N-acetyl-Ser-Asp-Lys-Pro (AcSDKP) and was equally sensitive to ACE inhibitors compared with wild-type AnCE. However, AnCE delta CHO was less stable, displaying a half-life of 4.94 h at 37 degrees C, compared with AnCE which retained full activity under the same conditions. Two catalytic criteria demonstrate the functional resemblance of AnCE with the human ACE C domain: first, the kcat/Km of AcSDKP hydrolysis and secondly, the kcat/Km and optimal chloride concentration for hippuryl-His-Leu hydrolysis. A range of ACE inhibitors were far less potent towards AnCE compared with the human ACE domains, except for captopril which suggests an alternative structure in AnCE corresponding to the region of the S1 subsite in the human ACE active sites.
Full Text
The Full Text of this article is available as a PDF (452.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bernstein K. E., Martin B. M., Edwards A. S., Bernstein E. A. Mouse angiotensin-converting enzyme is a protein composed of two homologous domains. J Biol Chem. 1989 Jul 15;264(20):11945–11951. [PubMed] [Google Scholar]
- Clare J. J., Rayment F. B., Ballantine S. P., Sreekrishna K., Romanos M. A. High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Biotechnology (N Y) 1991 May;9(5):455–460. doi: 10.1038/nbt0591-455. [DOI] [PubMed] [Google Scholar]
- Cornell M. J., Williams T. A., Lamango N. S., Coates D., Corvol P., Soubrier F., Hoheisel J., Lehrach H., Isaac R. E. Cloning and expression of an evolutionary conserved single-domain angiotensin converting enzyme from Drosophila melanogaster. J Biol Chem. 1995 Jun 9;270(23):13613–13619. doi: 10.1074/jbc.270.23.13613. [DOI] [PubMed] [Google Scholar]
- Corvol P., Williams T. A., Soubrier F. Peptidyl dipeptidase A: angiotensin I-converting enzyme. Methods Enzymol. 1995;248:283–305. doi: 10.1016/0076-6879(95)48020-x. [DOI] [PubMed] [Google Scholar]
- Cregg J. M., Vedvick T. S., Raschke W. C. Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology (N Y) 1993 Aug;11(8):905–910. doi: 10.1038/nbt0893-905. [DOI] [PubMed] [Google Scholar]
- Cushman D. W., Cheung H. S., Sabo E. F., Ondetti M. A. Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry. 1977 Dec 13;16(25):5484–5491. doi: 10.1021/bi00644a014. [DOI] [PubMed] [Google Scholar]
- Ehlers M. R., Chen Y. N., Riordan J. F. The unique N-terminal sequence of testis angiotensin-converting enzyme is heavily O-glycosylated and unessential for activity or stability. Biochem Biophys Res Commun. 1992 Feb 28;183(1):199–205. doi: 10.1016/0006-291x(92)91628-4. [DOI] [PubMed] [Google Scholar]
- Ehlers M. R., Riordan J. F. Angiotensin-converting enzyme: new concepts concerning its biological role. Biochemistry. 1989 Jun 27;28(13):5311–5318. doi: 10.1021/bi00439a001. [DOI] [PubMed] [Google Scholar]
- Ellis S. B., Brust P. F., Koutz P. J., Waters A. F., Harpold M. M., Gingeras T. R. Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris. Mol Cell Biol. 1985 May;5(5):1111–1121. doi: 10.1128/mcb.5.5.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erdös E. G., Skidgel R. A. The angiotensin I-converting enzyme. Lab Invest. 1987 Apr;56(4):345–348. [PubMed] [Google Scholar]
- Esther C. R., Jr, Thomas K. E., Bernstein K. E. Chicken lacks the testis specific isozyme of angiotensin converting enzyme found in mammals. Biochem Biophys Res Commun. 1994 Dec 30;205(3):1916–1921. doi: 10.1006/bbrc.1994.2894. [DOI] [PubMed] [Google Scholar]
- Grinna L. S., Tschopp J. F. Size distribution and general structural features of N-linked oligosaccharides from the methylotrophic yeast, Pichia pastoris. Yeast. 1989 Mar-Apr;5(2):107–115. doi: 10.1002/yea.320050206. [DOI] [PubMed] [Google Scholar]
- Hubert C., Houot A. M., Corvol P., Soubrier F. Structure of the angiotensin I-converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene. J Biol Chem. 1991 Aug 15;266(23):15377–15383. [PubMed] [Google Scholar]
- Jaspard E., Wei L., Alhenc-Gelas F. Differences in the properties and enzymatic specificities of the two active sites of angiotensin I-converting enzyme (kininase II). Studies with bradykinin and other natural peptides. J Biol Chem. 1993 May 5;268(13):9496–9503. [PubMed] [Google Scholar]
- Julius D., Blair L., Brake A., Sprague G., Thorner J. Yeast alpha factor is processed from a larger precursor polypeptide: the essential role of a membrane-bound dipeptidyl aminopeptidase. Cell. 1983 Mar;32(3):839–852. doi: 10.1016/0092-8674(83)90070-3. [DOI] [PubMed] [Google Scholar]
- Julius D., Brake A., Blair L., Kunisawa R., Thorner J. Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-alpha-factor. Cell. 1984 Jul;37(3):1075–1089. doi: 10.1016/0092-8674(84)90442-2. [DOI] [PubMed] [Google Scholar]
- Kasturi S., Jabbar M. A., Sen G. C., Sen I. Role of glycosylation in the biosynthesis and activity of rabbit testicular angiotensin-converting enzyme. Biochemistry. 1994 May 24;33(20):6228–6234. doi: 10.1021/bi00186a024. [DOI] [PubMed] [Google Scholar]
- Krege J. H., John S. W., Langenbach L. L., Hodgin J. B., Hagaman J. R., Bachman E. S., Jennette J. C., O'Brien D. A., Smithies O. Male-female differences in fertility and blood pressure in ACE-deficient mice. Nature. 1995 May 11;375(6527):146–148. doi: 10.1038/375146a0. [DOI] [PubMed] [Google Scholar]
- Kumar R. S., Thekkumkara T. J., Sen G. C. The mRNAs encoding the two angiotensin-converting isozymes are transcribed from the same gene by a tissue-specific choice of alternative transcription initiation sites. J Biol Chem. 1991 Feb 25;266(6):3854–3862. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lamango N. S., Isaac R. E. Identification and properties of a peptidyl dipeptidase in the housefly, Musca domestica, that resembles mammalian angiotensin-converting enzyme. Biochem J. 1994 May 1;299(Pt 3):651–657. doi: 10.1042/bj2990651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landt O., Grunert H. P., Hahn U. A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene. 1990 Nov 30;96(1):125–128. doi: 10.1016/0378-1119(90)90351-q. [DOI] [PubMed] [Google Scholar]
- Langford K. G., Shai S. Y., Howard T. E., Kovac M. J., Overbeek P. A., Bernstein K. E. Transgenic mice demonstrate a testis-specific promoter for angiotensin-converting enzyme. J Biol Chem. 1991 Aug 25;266(24):15559–15562. [PubMed] [Google Scholar]
- Langford K. G., Zhou Y., Russell L. D., Wilcox J. N., Bernstein K. E. Regulated expression of testis angiotensin-converting enzyme during spermatogenesis in mice. Biol Reprod. 1993 Jun;48(6):1210–1218. doi: 10.1095/biolreprod48.6.1210. [DOI] [PubMed] [Google Scholar]
- Lattion A. L., Soubrier F., Allegrini J., Hubert C., Corvol P., Alhenc-Gelas F. The testicular transcript of the angiotensin I-converting enzyme encodes for the ancestral, non-duplicated form of the enzyme. FEBS Lett. 1989 Jul 31;252(1-2):99–104. doi: 10.1016/0014-5793(89)80897-x. [DOI] [PubMed] [Google Scholar]
- Okawara Y., Kobayashi H. Enhancement of water intake by captopril (SQ14225), an angiotensin I-converting enzyme inhibitor, in the goldfish, Carassius auratus. Gen Comp Endocrinol. 1988 Jan;69(1):114–118. doi: 10.1016/0016-6480(88)90059-7. [DOI] [PubMed] [Google Scholar]
- Rothwell V., Kosowski S., Hadjilambris O., Baska R., Norman J. Glycosylation of active human renin is necessary for secretion: effect of targeted modifications of Asn-5 and Asn-75. DNA Cell Biol. 1993 May;12(4):291–298. doi: 10.1089/dna.1993.12.291. [DOI] [PubMed] [Google Scholar]
- Rousseau A., Michaud A., Chauvet M. T., Lenfant M., Corvol P. The hemoregulatory peptide N-acetyl-Ser-Asp-Lys-Pro is a natural and specific substrate of the N-terminal active site of human angiotensin-converting enzyme. J Biol Chem. 1995 Feb 24;270(8):3656–3661. doi: 10.1074/jbc.270.8.3656. [DOI] [PubMed] [Google Scholar]
- SKEGGS L. T., Jr, KAHN J. R., SHUMWAY N. P. The preparation and function of the hypertensin-converting enzyme. J Exp Med. 1956 Mar 1;103(3):295–299. doi: 10.1084/jem.103.3.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarkar G., Sommer S. S. The "megaprimer" method of site-directed mutagenesis. Biotechniques. 1990 Apr;8(4):404–407. [PubMed] [Google Scholar]
- Schiestl R. H., Gietz R. D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet. 1989 Dec;16(5-6):339–346. doi: 10.1007/BF00340712. [DOI] [PubMed] [Google Scholar]
- Semenkovich C. F., Luo C. C., Nakanishi M. K., Chen S. H., Smith L. C., Chan L. In vitro expression and site-specific mutagenesis of the cloned human lipoprotein lipase gene. Potential N-linked glycosylation site asparagine 43 is important for both enzyme activity and secretion. J Biol Chem. 1990 Apr 5;265(10):5429–5433. [PubMed] [Google Scholar]
- Sen G. C., Thekkumkara T. J., Kumar R. S. Angiotensin-converting enzyme: structural relationship of the testicular and the pulmonary forms. J Cardiovasc Pharmacol. 1990;16 (Suppl 4):S14–S18. [PubMed] [Google Scholar]
- Sibony M., Segretain D., Gasc J. M. Angiotensin-converting enzyme in murine testis: step-specific expression of the germinal isoform during spermiogenesis. Biol Reprod. 1994 May;50(5):1015–1026. doi: 10.1095/biolreprod50.5.1015. [DOI] [PubMed] [Google Scholar]
- Soubrier F., Alhenc-Gelas F., Hubert C., Allegrini J., John M., Tregear G., Corvol P. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9386–9390. doi: 10.1073/pnas.85.24.9386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sreekrishna K., Nelles L., Potenz R., Cruze J., Mazzaferro P., Fish W., Fuke M., Holden K., Phelps D., Wood P. High-level expression, purification, and characterization of recombinant human tumor necrosis factor synthesized in the methylotrophic yeast Pichia pastoris. Biochemistry. 1989 May 2;28(9):4117–4125. doi: 10.1021/bi00435a074. [DOI] [PubMed] [Google Scholar]
- Tatei K., Cai H., Ip Y. T., Levine M. Race: a Drosophila homologue of the angiotensin converting enzyme. Mech Dev. 1995 Jun;51(2-3):157–168. doi: 10.1016/0925-4773(95)00349-5. [DOI] [PubMed] [Google Scholar]
- Turner A. J., Hryszko J., Hooper N. M., Dowdall M. J. Purification and characterization of a peptidyl dipeptidase resembling angiotensin converting enzyme from the electric organ of Torpedo marmorata. J Neurochem. 1987 Mar;48(3):910–916. doi: 10.1111/j.1471-4159.1987.tb05603.x. [DOI] [PubMed] [Google Scholar]
- Wei L., Alhenc-Gelas F., Corvol P., Clauser E. The two homologous domains of human angiotensin I-converting enzyme are both catalytically active. J Biol Chem. 1991 May 15;266(14):9002–9008. [PubMed] [Google Scholar]
- Wei L., Alhenc-Gelas F., Soubrier F., Michaud A., Corvol P., Clauser E. Expression and characterization of recombinant human angiotensin I-converting enzyme. Evidence for a C-terminal transmembrane anchor and for a proteolytic processing of the secreted recombinant and plasma enzymes. J Biol Chem. 1991 Mar 25;266(9):5540–5546. [PubMed] [Google Scholar]
- Wei L., Clauser E., Alhenc-Gelas F., Corvol P. The two homologous domains of human angiotensin I-converting enzyme interact differently with competitive inhibitors. J Biol Chem. 1992 Jul 5;267(19):13398–13405. [PubMed] [Google Scholar]
- Williams T. A., Corvol P., Soubrier F., Clauser E. A recombinant form of angiotensin converting enzyme expressed from baculovirus-infected insect cells. Biochimie. 1994;76(3-4):312–314. doi: 10.1016/0300-9084(94)90164-3. [DOI] [PubMed] [Google Scholar]
- Williams T. A., Corvol P., Soubrier F. Identification of two active site residues in human angiotensin I-converting enzyme. J Biol Chem. 1994 Nov 25;269(47):29430–29434. [PubMed] [Google Scholar]
- Yang H. Y., Erdös E. G., Levin Y. A dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin. Biochim Biophys Acta. 1970 Aug 21;214(2):374–376. doi: 10.1016/0005-2795(70)90017-6. [DOI] [PubMed] [Google Scholar]