Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Aug 15;318(Pt 1):139–144. doi: 10.1042/bj3180139

Lecithin hydrophobicity modulates the process of cholesterol crystal nucleation and growth in supersaturated model bile systems.

H Ochi 1, S Tazuma 1, G Kajiyama 1
PMCID: PMC1217599  PMID: 8761463

Abstract

The present study was performed to determine whether the degree of lecithin hydrophobicity regulates bile metastability and, therefore, affects the process of cholesterol crystallization. Supersaturated model bile (MB) solutions were prepared with an identical composition on a molar basis (taurocholate/lecithin/cholesterol, 73:19.5:7.5; total lipid concentration 9 g/dl) except for the lecithin species; egg yolk phosphatidylcholine, soybean phosphatidylcholine, 1-palmitoyl-2-linoleoyl-sn-phosphatidylcholine, dilinoleoyl phosphatidylcholine and dipalmitoyl phosphatidylcholine. Each MB solution was incubated and sequentially examined. Video-enhanced contrast microscopy demonstrated that the rate of vesicular aggregation and fusion correlated with the degree of lecithin hydrophobicity, and that the rate of cholesterol crystal nucleation correlated with the degree of lecithin hydrophilicity. In MBs containing less hydrophobic lecithin, needle-like crystals developed and transformed into mature plate-like crystals, whereas classical plate-like crystals were consistently observed in MBs composed of hydrophobic lecithin. Laser-diffraction particle size analysis demonstrated that the increase in lecithin hydrophobicity enlarged the vesicle dimension, enhancing its cholesterol-holding capacity. Correlation between vesicular cholesterol packing density and lecithin hydrophobicity suggests that the process of bile cholesterol nucleation and growth is regulated, in part, by acyl chain unsaturation in lecithin. Since the composition of biliary lecithins is responsive to dietary manipulations, this study provides new insights into the prevention of cholesterol gallstones.

Full Text

The Full Text of this article is available as a PDF (627.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlberg J., Curstedt T., Einarsson K., Sjövall J. Molecular species of biliary phosphatidylcholines in gallstone patients: the influence of treatment with cholic acid and chenodeoxycholic acid. J Lipid Res. 1981 Mar;22(3):404–409. [PubMed] [Google Scholar]
  2. Ahrendt S. A., Fox-Talbot K., Kaufman H. S., Lillemoe K. D., Pitt H. A. Cholesterol nucleates rapidly from mixed micelles in the prairie dog. Biochim Biophys Acta. 1994 Feb 10;1211(1):7–13. doi: 10.1016/0005-2760(94)90132-5. [DOI] [PubMed] [Google Scholar]
  3. Booker M. L., LaMorte W. W., Ahrendt S. A., Lillemoe K. D., Pitt H. A. Distribution of phosphatidylcholine molecular species between mixed micelles and phospholipid-cholesterol vesicles in human gallbladder bile: dependence on acyl chain length and unsaturation. J Lipid Res. 1992 Oct;33(10):1485–1492. [PubMed] [Google Scholar]
  4. Busch N., Tokumo H., Holzbach R. T. A sensitive method for determination of cholesterol growth using model solutions of supersaturated bile. J Lipid Res. 1990 Oct;31(10):1903–1909. [PubMed] [Google Scholar]
  5. Cohen D. E., Carey M. C. Acyl chain unsaturation modulates distribution of lecithin molecular species between mixed micelles and vesicles in model bile. Implications for particle structure and metastable cholesterol solubilities. J Lipid Res. 1991 Aug;32(8):1291–1302. [PubMed] [Google Scholar]
  6. Collins J. J., Phillips M. C. The stability and structure of cholesterol-rich codispersions of cholesterol and phosphatidylcholine. J Lipid Res. 1982 Feb;23(2):291–298. [PubMed] [Google Scholar]
  7. Halpern Z., Dudley M. A., Kibe A., Lynn M. P., Breuer A. C., Holzbach R. T. Rapid vesicle formation and aggregation in abnormal human biles. A time-lapse video-enhanced contrast microscopy study. Gastroenterology. 1986 Apr;90(4):875–885. doi: 10.1016/0016-5085(86)90863-2. [DOI] [PubMed] [Google Scholar]
  8. Halpern Z., Moshkowitz M., Laufer H., Peled Y., Gilat T. Effect of phospholipids and their molecular species on cholesterol solubility and nucleation in human and model biles. Gut. 1993 Jan;34(1):110–115. doi: 10.1136/gut.34.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jüngst D., Lang T., Huber P., Lange V., Paumgartner G. Effect of phospholipids and bile acids on cholesterol nucleation time and vesicular/micellar cholesterol in gallbladder bile of patients with cholesterol stones. J Lipid Res. 1993 Sep;34(9):1457–1464. [PubMed] [Google Scholar]
  10. Kajiyama G., Kubota S., Sasaki H., Kawamoto T., Miyoshi A. Lipid metabolism in the development of cholesterol gallstones in hamsters. I. Study on the relationship between serum and biliary lipids. Hiroshima J Med Sci. 1980 Sep;29(3):133–141. [PubMed] [Google Scholar]
  11. Konikoff F. M., Chung D. S., Donovan J. M., Small D. M., Carey M. C. Filamentous, helical, and tubular microstructures during cholesterol crystallization from bile. Evidence that cholesterol does not nucleate classic monohydrate plates. J Clin Invest. 1992 Sep;90(3):1155–1160. doi: 10.1172/JCI115935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Konikoff F. M., Cohen D. E., Carey M. C. Phospholipid molecular species influence crystal habits and transition sequences of metastable intermediates during cholesterol crystallization from bile salt-rich model bile. J Lipid Res. 1994 Jan;35(1):60–70. [PubMed] [Google Scholar]
  13. Patton G. M., Fasulo J. M., Robins S. J. Separation of phospholipids and individual molecular species of phospholipids by high-performance liquid chromatography. J Lipid Res. 1982 Jan;23(1):190–196. [PubMed] [Google Scholar]
  14. Pope J. L. Crystallization of sodium taurocholate. J Lipid Res. 1967 Mar;8(2):146–147. [PubMed] [Google Scholar]
  15. Somjen G. J., Gilat T. A non-micellar mode of cholesterol transport in human bile. FEBS Lett. 1983 Jun 13;156(2):265–268. doi: 10.1016/0014-5793(83)80510-9. [DOI] [PubMed] [Google Scholar]
  16. Stolk M. F., van de Heijning B. J., van Erpecum K. J., van den Broek A. M., Renooij W., van Berge-Henegouwen G. P. The effect of bile acid hydrophobicity on nucleation of several types of cholesterol crystals from model bile vesicles. J Hepatol. 1994 Jun;20(6):802–810. doi: 10.1016/s0168-8278(05)80153-9. [DOI] [PubMed] [Google Scholar]
  17. Tao S., Tazuma S., Kajiyama G. Fatty acid composition of lecithin is a key factor in bile metastability in supersaturated model bile systems. Biochim Biophys Acta. 1993 Apr 7;1167(2):142–146. doi: 10.1016/0005-2760(93)90154-2. [DOI] [PubMed] [Google Scholar]
  18. Tazuma S., Holzbach R. T. Transport of conjugated bilirubin and other organic anions in bile: relation to biliary lipid structures. Proc Natl Acad Sci U S A. 1987 Apr;84(7):2052–2056. doi: 10.1073/pnas.84.7.2052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tazuma S., Ochi H., Teramen K., Yamashita Y., Horikawa K., Miura H., Hirano N., Sasaki M., Aihara N., Hatsushika S. Degree of fatty acyl chain unsaturation in biliary lecithin dictates cholesterol nucleation and crystal growth. Biochim Biophys Acta. 1994 Nov 17;1215(1-2):74–78. doi: 10.1016/0005-2760(94)90093-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES