Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Aug 15;318(Pt 1):149–155. doi: 10.1042/bj3180149

Functional domains on elastin and microfibril-associated glycoprotein involved in elastic fibre assembly.

P Brown-Augsburger 1, T Broekelmann 1, J Rosenbloom 1, R P Mecham 1
PMCID: PMC1217601  PMID: 8761465

Abstract

Studies in vitro suggest that the C-terminus of tropoelastin mediates elastin polymerization through an interaction with microfibril-associated proteins. In this study we have used cultured auricular chondrocytes as a model system to examine whether this interaction is critical for elastic fibre formation in vivo. Auricular chondrocytes, which deposit an abundant elastic fibre matrix, were cultured in the presence of Fab fragments of antibodies directed against the C-terminus (CTe) or an N-terminal domain (ATe) of tropoelastin. Immunofluorescent staining of the extracellular matrix deposited by the cells showed that the CTe antibody inhibited the deposition of elastin without affecting microfibril structure. Cells grown under identical conditions in the presence of ATe, however, formed fibres that stained normally for both elastin and microfibril proteins. Chondrocytes cultured in the presence of microfibril-associated glycoprotein (MAGP):21-35, an antibody directed against a domain near the N-terminus of MAGP, did not organize tropoelastin into fibres. However, immunostaining for MAGP and fibrillin revealed normal microfibrils. In agreement with the immunofluorescence staining patterns, fewer elastin-specific cross-links, indicative of insoluble elastin, were detected in the extracellular matrix of cells cultured in the presence of CTe. The medium from these cultures, however, contained more soluble elastin, consistent with an antibody-induced alteration of elastin assembly but not its synthesis. Northern analysis of antibody-treated and control cultures substantiated equivalent levels of tropoelastin mRNA. These results confirm that the C-terminus of tropoelastin interacts with microfibrils during the assembly of elastic fibres. Further, the results suggest that the interaction between tropoelastin and microfibrils might be mediated by a domain involving the N-terminal half of MAGP.

Full Text

The Full Text of this article is available as a PDF (470.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bashir M. M., Abrams W. R., Rosenbloom J., Kucich U., Bacarra M., Han M. D., Brown-Augsberger P., Mecham R., Rosenbloom J. Microfibril-associated glycoprotein: characterization of the bovine gene and of the recombinantly expressed protein. Biochemistry. 1994 Jan 18;33(2):593–600. doi: 10.1021/bi00168a026. [DOI] [PubMed] [Google Scholar]
  2. Brown-Augsburger P., Broekelmann T., Mecham L., Mercer R., Gibson M. A., Cleary E. G., Abrams W. R., Rosenbloom J., Mecham R. P. Microfibril-associated glycoprotein binds to the carboxyl-terminal domain of tropoelastin and is a substrate for transglutaminase. J Biol Chem. 1994 Nov 11;269(45):28443–28449. [PubMed] [Google Scholar]
  3. Brown-Augsburger P., Tisdale C., Broekelmann T., Sloan C., Mecham R. P. Identification of an elastin cross-linking domain that joins three peptide chains. Possible role in nucleated assembly. J Biol Chem. 1995 Jul 28;270(30):17778–17783. doi: 10.1074/jbc.270.30.17778. [DOI] [PubMed] [Google Scholar]
  4. Brown P. L., Mecham L., Tisdale C., Mecham R. P. The cysteine residues in the carboxy terminal domain of tropoelastin form an intrachain disulfide bond that stabilizes a loop structure and positively charged pocket. Biochem Biophys Res Commun. 1992 Jul 15;186(1):549–555. doi: 10.1016/s0006-291x(05)80843-5. [DOI] [PubMed] [Google Scholar]
  5. Curran M. E., Atkinson D. L., Ewart A. K., Morris C. A., Leppert M. F., Keating M. T. The elastin gene is disrupted by a translocation associated with supravalvular aortic stenosis. Cell. 1993 Apr 9;73(1):159–168. doi: 10.1016/0092-8674(93)90168-p. [DOI] [PubMed] [Google Scholar]
  6. Ewart A. K., Morris C. A., Atkinson D., Jin W., Sternes K., Spallone P., Stock A. D., Leppert M., Keating M. T. Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nat Genet. 1993 Sep;5(1):11–16. doi: 10.1038/ng0993-11. [DOI] [PubMed] [Google Scholar]
  7. Gibson M. A., Cleary E. G. The immunohistochemical localisation of microfibril-associated glycoprotein (MAGP) in elastic and non-elastic tissues. Immunol Cell Biol. 1987 Aug;65(Pt 4):345–356. doi: 10.1038/icb.1987.39. [DOI] [PubMed] [Google Scholar]
  8. Gibson M. A., Hughes J. L., Fanning J. C., Cleary E. G. The major antigen of elastin-associated microfibrils is a 31-kDa glycoprotein. J Biol Chem. 1986 Aug 25;261(24):11429–11436. [PubMed] [Google Scholar]
  9. Gibson M. A., Sandberg L. B., Grosso L. E., Cleary E. G. Complementary DNA cloning establishes microfibril-associated glycoprotein (MAGP) to be a discrete component of the elastin-associated microfibrils. J Biol Chem. 1991 Apr 25;266(12):7596–7601. [PubMed] [Google Scholar]
  10. Gray W. R., Sandberg L. B., Foster J. A. Molecular model for elastin structure and function. Nature. 1973 Dec 21;246(5434):461–466. doi: 10.1038/246461a0. [DOI] [PubMed] [Google Scholar]
  11. Kumaratilake J. S., Gibson M. A., Fanning J. C., Cleary E. G. The tissue distribution of microfibrils reacting with a monospecific antibody to MAGP, the major glycoprotein antigen of elastin-associated microfibrils. Eur J Cell Biol. 1989 Oct;50(1):117–127. [PubMed] [Google Scholar]
  12. LOW F. N. Microfibrils: fine filamentous components of the tissue space. Anat Rec. 1962 Feb;142:131–137. doi: 10.1002/ar.1091420205. [DOI] [PubMed] [Google Scholar]
  13. Mariencheck M. C., Davis E. C., Zhang H., Ramirez F., Rosenbloom J., Gibson M. A., Parks W. C., Mecham R. P. Fibrillin-1 and fibrillin-2 show temporal and tissue-specific regulation of expression in developing elastic tissues. Connect Tissue Res. 1995;31(2):87–97. doi: 10.3109/03008209509028396. [DOI] [PubMed] [Google Scholar]
  14. Marigo V., Daga-Gordini D., Sitta A., Volpin D., Bressan G. M. Effect of monoclonal antibodies to defined regions of tropoelastin on elastogenesis in vitro. Eur J Cell Biol. 1992 Apr;57(2):254–264. [PubMed] [Google Scholar]
  15. Maslen C. L., Corson G. M., Maddox B. K., Glanville R. W., Sakai L. Y. Partial sequence of a candidate gene for the Marfan syndrome. Nature. 1991 Jul 25;352(6333):334–337. doi: 10.1038/352334a0. [DOI] [PubMed] [Google Scholar]
  16. Mecham R. P. Modulation of elastin synthesis: in vitro models. Methods Enzymol. 1987;144:232–246. doi: 10.1016/0076-6879(87)44181-5. [DOI] [PubMed] [Google Scholar]
  17. Parks W. C., Secrist H., Wu L. C., Mecham R. P. Developmental regulation of tropoelastin isoforms. J Biol Chem. 1988 Mar 25;263(9):4416–4423. [PubMed] [Google Scholar]
  18. Prosser I. W., Whitehouse L. A., Parks W. C., Stahle-Bäckdahl M., Hinek A., Park P. W., Mecham R. P. Polyclonal antibodies to tropoelastin and the specific detection and measurement of tropoelastin in vitro. Connect Tissue Res. 1991;25(3-4):265–279. doi: 10.3109/03008209109029162. [DOI] [PubMed] [Google Scholar]
  19. Ross R., Fialkow R. J., Altman L. K. The morphogenesis of elastic fibers. Adv Exp Med Biol. 1977;79:7–17. doi: 10.1007/978-1-4684-9093-0_2. [DOI] [PubMed] [Google Scholar]
  20. Sakai L. Y., Keene D. R., Glanville R. W., Bächinger H. P. Purification and partial characterization of fibrillin, a cysteine-rich structural component of connective tissue microfibrils. J Biol Chem. 1991 Aug 5;266(22):14763–14770. [PubMed] [Google Scholar]
  21. Tomasini-Johansson B. R., Ruoslahti E., Pierschbacher M. D. A 30 kD sulfated extracellular matrix protein immunologically crossreactive with vitronectin. Matrix. 1993 May;13(3):203–214. doi: 10.1016/s0934-8832(11)80004-1. [DOI] [PubMed] [Google Scholar]
  22. Wrenn D. S., Griffin G. L., Senior R. M., Mecham R. P. Characterization of biologically active domains on elastin: identification of a monoclonal antibody to a cell recognition site. Biochemistry. 1986 Sep 9;25(18):5172–5176. doi: 10.1021/bi00366a028. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES