Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Aug 15;318(Pt 1):219–226. doi: 10.1042/bj3180219

Identification of a vitamin D3-response element that overlaps a unique inverted TATA box in the rat bone sialoprotein gene.

R H Kim 1, J J Li 1, Y Ogata 1, M Yamauchi 1, L P Freedman 1, J Sodek 1
PMCID: PMC1217611  PMID: 8761475

Abstract

Bone sialoprotein (BSP), an early marker of osteoblast differentiation, has been implicated in the nucleation of hydroxyapatite during bone formation de novo. Our studies, using the osteoblastic cell line ROS 17/2.8, have revealed that rat BSP gene expression is suppressed by 1,25-dihydroxyvitamin D3[1,25(OH)2D3], which is a powerful regulator of bone formation and resorption. To determine the molecular basis of the transcriptional suppression of BSP gene transcription by 1,25(OH)2D3, we have conducted transient transfection analyses with chimaeric constructs of the rat BSP gene promoter linked to a luciferase reporter gene. 1,25(OH)2D3 suppressed expression in all constructs, including a short construct (pLUC 3; nt -116 to +60) that contained a putative vitamin D3-response element (VDRE; AGGGTTTATAGGTCA; nt -28 to -14) that overlaps a unique inverted TATA (TTTATA) box. Mobility shift assays demonstrated strong binding of recombinant human vitamin D3 receptor protein (hVDR) to the VDRE. Point mutations introduced into each half-site and analysed for 1,25(OH)2D3-mediated suppression of transcription and for hVDR binding either decreased or increased both transcriptional suppression and binding. In comparison with activating VDREs, the rat BSP VDRE bound VDR-VDR homodimers more avidly than VDR-RXR alpha heterodimers (where RXR is retinoid X receptor). These studies have therefore identified a novel 1,25(OH)2D3 suppressor element that overlaps the inverted TATA box in the rat BSP gene and indicate that transcriptional suppression of the rat BSP gene by 1,25(OH)2D3 might involve competition between the VDR and the TATA binding protein (TBP).

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alroy I., Towers T. L., Freedman L. P. Transcriptional repression of the interleukin-2 gene by vitamin D3: direct inhibition of NFATp/AP-1 complex formation by a nuclear hormone receptor. Mol Cell Biol. 1995 Oct;15(10):5789–5799. doi: 10.1128/mcb.15.10.5789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beato M. Gene regulation by steroid hormones. Cell. 1989 Feb 10;56(3):335–344. doi: 10.1016/0092-8674(89)90237-7. [DOI] [PubMed] [Google Scholar]
  3. Bellows C. G., Heersche J. N., Aubin J. E. Determination of the capacity for proliferation and differentiation of osteoprogenitor cells in the presence and absence of dexamethasone. Dev Biol. 1990 Jul;140(1):132–138. doi: 10.1016/0012-1606(90)90060-v. [DOI] [PubMed] [Google Scholar]
  4. Beresford J. N., Joyner C. J., Devlin C., Triffitt J. T. The effects of dexamethasone and 1,25-dihydroxyvitamin D3 on osteogenic differentiation of human marrow stromal cells in vitro. Arch Oral Biol. 1994 Nov;39(11):941–947. doi: 10.1016/0003-9969(94)90077-9. [DOI] [PubMed] [Google Scholar]
  5. Bianco P., Riminucci M., Silvestrini G., Bonucci E., Termine J. D., Fisher L. W., Robey P. G. Localization of bone sialoprotein (BSP) to Golgi and post-Golgi secretory structures in osteoblasts and to discrete sites in early bone matrix. J Histochem Cytochem. 1993 Feb;41(2):193–203. doi: 10.1177/41.2.8419459. [DOI] [PubMed] [Google Scholar]
  6. Carlberg C., Bendik I., Wyss A., Meier E., Sturzenbecker L. J., Grippo J. F., Hunziker W. Two nuclear signalling pathways for vitamin D. Nature. 1993 Feb 18;361(6413):657–660. doi: 10.1038/361657a0. [DOI] [PubMed] [Google Scholar]
  7. Chatterjee V. K., Lee J. K., Rentoumis A., Jameson J. L. Negative regulation of the thyroid-stimulating hormone alpha gene by thyroid hormone: receptor interaction adjacent to the TATA box. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9114–9118. doi: 10.1073/pnas.86.23.9114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen J. K., Shapiro H. S., Wrana J. L., Reimers S., Heersche J. N., Sodek J. Localization of bone sialoprotein (BSP) expression to sites of mineralized tissue formation in fetal rat tissues by in situ hybridization. Matrix. 1991 Apr;11(2):133–143. doi: 10.1016/s0934-8832(11)80217-9. [DOI] [PubMed] [Google Scholar]
  9. Chen J., McKee M. D., Nanci A., Sodek J. Bone sialoprotein mRNA expression and ultrastructural localization in fetal porcine calvarial bone: comparisons with osteopontin. Histochem J. 1994 Jan;26(1):67–78. [PubMed] [Google Scholar]
  10. Chen J., Shapiro H. S., Sodek J. Development expression of bone sialoprotein mRNA in rat mineralized connective tissues. J Bone Miner Res. 1992 Aug;7(8):987–997. doi: 10.1002/jbmr.5650070816. [DOI] [PubMed] [Google Scholar]
  11. Cheskis B., Freedman L. P. Ligand modulates the conversion of DNA-bound vitamin D3 receptor (VDR) homodimers into VDR-retinoid X receptor heterodimers. Mol Cell Biol. 1994 May;14(5):3329–3338. doi: 10.1128/mcb.14.5.3329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  13. Crone D. E., Kim H. S., Spindler S. R. Alpha and beta thyroid hormone receptors bind immediately adjacent to the rat growth hormone gene TATA box in a negatively hormone-responsive promoter region. J Biol Chem. 1990 Jul 5;265(19):10851–10856. [PubMed] [Google Scholar]
  14. DeLuca H. F. The vitamin D story: a collaborative effort of basic science and clinical medicine. FASEB J. 1988 Mar 1;2(3):224–236. [PubMed] [Google Scholar]
  15. Demay M. B., Gerardi J. M., DeLuca H. F., Kronenberg H. M. DNA sequences in the rat osteocalcin gene that bind the 1,25-dihydroxyvitamin D3 receptor and confer responsiveness to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A. 1990 Jan;87(1):369–373. doi: 10.1073/pnas.87.1.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Demay M. B., Roth D. A., Kronenberg H. M. Regions of the rat osteocalcin gene which mediate the effect of 1,25-dihydroxyvitamin D3 on gene transcription. J Biol Chem. 1989 Feb 5;264(4):2279–2282. [PubMed] [Google Scholar]
  17. Fisher L. W., McBride O. W., Termine J. D., Young M. F. Human bone sialoprotein. Deduced protein sequence and chromosomal localization. J Biol Chem. 1990 Feb 5;265(4):2347–2351. [PubMed] [Google Scholar]
  18. Haussler M. R., Mangelsdorf D. J., Komm B. S., Terpening C. M., Yamaoka K., Allegretto E. A., Baker A. R., Shine J., McDonnell D. P., Hughes M. Molecular biology of the vitamin D hormone. Recent Prog Horm Res. 1988;44:263–305. doi: 10.1016/b978-0-12-571144-9.50013-2. [DOI] [PubMed] [Google Scholar]
  19. Heinrichs A. A., Bortell R., Rahman S., Stein J. L., Alnemri E. S., Litwack G., Lian J. B., Stein G. S. Identification of multiple glucocorticoid receptor binding sites in the rat osteocalcin gene promoter. Biochemistry. 1993 Oct 26;32(42):11436–11444. doi: 10.1021/bi00093a022. [DOI] [PubMed] [Google Scholar]
  20. Hoopes B. C., LeBlanc J. F., Hawley D. K. Kinetic analysis of yeast TFIID-TATA box complex formation suggests a multi-step pathway. J Biol Chem. 1992 Jun 5;267(16):11539–11547. [PubMed] [Google Scholar]
  21. Hunter G. K., Goldberg H. A. Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8562–8565. doi: 10.1073/pnas.90.18.8562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ishida H., Bellows C. G., Aubin J. E., Heersche J. N. Characterization of the 1,25-(OH)2D3-induced inhibition of bone nodule formation in long-term cultures of fetal rat calvaria cells. Endocrinology. 1993 Jan;132(1):61–66. doi: 10.1210/endo.132.1.8419147. [DOI] [PubMed] [Google Scholar]
  23. Kasugai S., Nagata T., Sodek J. Temporal studies on the tissue compartmentalization of bone sialoprotein (BSP), osteopontin (OPN), and SPARC protein during bone formation in vitro. J Cell Physiol. 1992 Sep;152(3):467–477. doi: 10.1002/jcp.1041520305. [DOI] [PubMed] [Google Scholar]
  24. Kasugai S., Todescan R., Jr, Nagata T., Yao K. L., Butler W. T., Sodek J. Expression of bone matrix proteins associated with mineralized tissue formation by adult rat bone marrow cells in vitro: inductive effects of dexamethasone on the osteoblastic phenotype. J Cell Physiol. 1991 Apr;147(1):111–120. doi: 10.1002/jcp.1041470115. [DOI] [PubMed] [Google Scholar]
  25. Kato S., Tora L., Yamauchi J., Masushige S., Bellard M., Chambon P. A far upstream estrogen response element of the ovalbumin gene contains several half-palindromic 5'-TGACC-3' motifs acting synergistically. Cell. 1992 Feb 21;68(4):731–742. doi: 10.1016/0092-8674(92)90148-6. [DOI] [PubMed] [Google Scholar]
  26. Kerner S. A., Scott R. A., Pike J. W. Sequence elements in the human osteocalcin gene confer basal activation and inducible response to hormonal vitamin D3. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4455–4459. doi: 10.1073/pnas.86.12.4455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kim R. H., Shapiro H. S., Li J. J., Wrana J. L., Sodek J. Characterization of the human bone sialoprotein (BSP) gene and its promoter sequence. Matrix Biol. 1994 Jan;14(1):31–40. doi: 10.1016/0945-053x(94)90027-2. [DOI] [PubMed] [Google Scholar]
  28. Kream B. E., Rowe D., Smith M. D., Maher V., Majeska R. Hormonal regulation of collagen synthesis in a clonal rat osteosarcoma cell line. Endocrinology. 1986 Nov;119(5):1922–1928. doi: 10.1210/endo-119-5-1922. [DOI] [PubMed] [Google Scholar]
  29. Landt O., Grunert H. P., Hahn U. A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene. 1990 Nov 30;96(1):125–128. doi: 10.1016/0378-1119(90)90351-q. [DOI] [PubMed] [Google Scholar]
  30. Li J. J., Kim R. H., Sodek J. An inverted TATA box directs downstream transcription of the bone sialoprotein gene. Biochem J. 1995 Aug 15;310(Pt 1):33–40. doi: 10.1042/bj3100033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Li J. J., Sodek J. Cloning and characterization of the rat bone sialoprotein gene promoter. Biochem J. 1993 Feb 1;289(Pt 3):625–629. doi: 10.1042/bj2890625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Liu M., Freedman L. P. Transcriptional synergism between the vitamin D3 receptor and other nonreceptor transcription factors. Mol Endocrinol. 1994 Dec;8(12):1593–1604. doi: 10.1210/mend.8.12.7708050. [DOI] [PubMed] [Google Scholar]
  33. Luisi B. F., Xu W. X., Otwinowski Z., Freedman L. P., Yamamoto K. R., Sigler P. B. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature. 1991 Aug 8;352(6335):497–505. doi: 10.1038/352497a0. [DOI] [PubMed] [Google Scholar]
  34. MacDonald P. N., Dowd D. R., Nakajima S., Galligan M. A., Reeder M. C., Haussler C. A., Ozato K., Haussler M. R. Retinoid X receptors stimulate and 9-cis retinoic acid inhibits 1,25-dihydroxyvitamin D3-activated expression of the rat osteocalcin gene. Mol Cell Biol. 1993 Sep;13(9):5907–5917. doi: 10.1128/mcb.13.9.5907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Majeska R. J., Rodan G. A. The effect of 1,25(OH)2D3 on alkaline phosphatase in osteoblastic osteosarcoma cells. J Biol Chem. 1982 Apr 10;257(7):3362–3365. [PubMed] [Google Scholar]
  36. Manolagas S. C., Burton D. W., Deftos L. J. 1,25-Dihydroxyvitamin D3 stimulates the alkaline phosphatase activity of osteoblast-like cells. J Biol Chem. 1981 Jul 25;256(14):7115–7117. [PubMed] [Google Scholar]
  37. McCulloch C. A., Tenenbaum H. C. Dexamethasone induces proliferation and terminal differentiation of osteogenic cells in tissue culture. Anat Rec. 1986 Aug;215(4):397–402. doi: 10.1002/ar.1092150410. [DOI] [PubMed] [Google Scholar]
  38. Morrison N. A., Shine J., Fragonas J. C., Verkest V., McMenemy M. L., Eisman J. A. 1,25-dihydroxyvitamin D-responsive element and glucocorticoid repression in the osteocalcin gene. Science. 1989 Dec 1;246(4934):1158–1161. doi: 10.1126/science.2588000. [DOI] [PubMed] [Google Scholar]
  39. Mulkins M. A., Manolagas S. C., Deftos L. J., Sussman H. H. 1,25-Dihydroxyvitamin D3 increases bone alkaline phosphatase isoenzyme levels in human osteogenic sarcoma cells. J Biol Chem. 1983 May 25;258(10):6219–6225. [PubMed] [Google Scholar]
  40. Noda M., Vogel R. L., Craig A. M., Prahl J., DeLuca H. F., Denhardt D. T. Identification of a DNA sequence responsible for binding of the 1,25-dihydroxyvitamin D3 receptor and 1,25-dihydroxyvitamin D3 enhancement of mouse secreted phosphoprotein 1 (SPP-1 or osteopontin) gene expression. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9995–9999. doi: 10.1073/pnas.87.24.9995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ogata Y., Yamauchi M., Kim R. H., Li J. J., Freedman L. P., Sodek J. Glucocorticoid regulation of bone sialoprotein (BSP) gene expression. Identification of a glucocorticoid response element in the bone sialoprotein gene promoter. Eur J Biochem. 1995 May 15;230(1):183–192. doi: 10.1111/j.1432-1033.1995.0183i.x. [DOI] [PubMed] [Google Scholar]
  42. Ohkuma Y., Horikoshi M., Roeder R. G., Desplan C. Binding site-dependent direct activation and repression of in vitro transcription by Drosophila homeodomain proteins. Cell. 1990 May 4;61(3):475–484. doi: 10.1016/0092-8674(90)90529-n. [DOI] [PubMed] [Google Scholar]
  43. Ohkuma Y., Horikoshi M., Roeder R. G., Desplan C. Engrailed, a homeodomain protein, can repress in vitro transcription by competition with the TATA box-binding protein transcription factor IID. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2289–2293. doi: 10.1073/pnas.87.6.2289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Okazaki T., Zajac J. D., Igarashi T., Ogata E., Kronenberg H. M. Negative regulatory elements in the human parathyroid hormone gene. J Biol Chem. 1991 Nov 15;266(32):21903–21910. [PubMed] [Google Scholar]
  45. Oldberg A., Franzén A., Heinegård D. The primary structure of a cell-binding bone sialoprotein. J Biol Chem. 1988 Dec 25;263(36):19430–19432. [PubMed] [Google Scholar]
  46. Oldberg A., Jirskog-Hed B., Axelsson S., Heinegård D. Regulation of bone sialoprotein mRNA by steroid hormones. J Cell Biol. 1989 Dec;109(6 Pt 1):3183–3186. doi: 10.1083/jcb.109.6.3183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Ozono K., Liao J., Kerner S. A., Scott R. A., Pike J. W. The vitamin D-responsive element in the human osteocalcin gene. Association with a nuclear proto-oncogene enhancer. J Biol Chem. 1990 Dec 15;265(35):21881–21888. [PubMed] [Google Scholar]
  48. Pike J. W. Vitamin D3 receptors: structure and function in transcription. Annu Rev Nutr. 1991;11:189–216. doi: 10.1146/annurev.nu.11.070191.001201. [DOI] [PubMed] [Google Scholar]
  49. Prince C. W., Butler W. T. 1,25-Dihydroxyvitamin D3 regulates the biosynthesis of osteopontin, a bone-derived cell attachment protein, in clonal osteoblast-like osteosarcoma cells. Coll Relat Res. 1987 Sep;7(4):305–313. doi: 10.1016/s0174-173x(87)80036-5. [DOI] [PubMed] [Google Scholar]
  50. Reddi A. H. Bone and cartilage differentiation. Curr Opin Genet Dev. 1994 Oct;4(5):737–744. doi: 10.1016/0959-437x(94)90141-o. [DOI] [PubMed] [Google Scholar]
  51. Rickard D. J., Sullivan T. A., Shenker B. J., Leboy P. S., Kazhdan I. Induction of rapid osteoblast differentiation in rat bone marrow stromal cell cultures by dexamethasone and BMP-2. Dev Biol. 1994 Jan;161(1):218–228. doi: 10.1006/dbio.1994.1022. [DOI] [PubMed] [Google Scholar]
  52. Sadowski I., Ma J., Triezenberg S., Ptashne M. GAL4-VP16 is an unusually potent transcriptional activator. Nature. 1988 Oct 6;335(6190):563–564. doi: 10.1038/335563a0. [DOI] [PubMed] [Google Scholar]
  53. Schwabe J. W., Neuhaus D., Rhodes D. Solution structure of the DNA-binding domain of the oestrogen receptor. Nature. 1990 Nov 29;348(6300):458–461. doi: 10.1038/348458a0. [DOI] [PubMed] [Google Scholar]
  54. Shapiro H. S., Chen J., Wrana J. L., Zhang Q., Blum M., Sodek J. Characterization of porcine bone sialoprotein: primary structure and cellular expression. Matrix. 1993 Nov;13(6):431–440. doi: 10.1016/s0934-8832(11)80109-5. [DOI] [PubMed] [Google Scholar]
  55. Sone T., Kerner S., Pike J. W. Vitamin D receptor interaction with specific DNA. Association as a 1,25-dihydroxyvitamin D3-modulated heterodimer. J Biol Chem. 1991 Dec 5;266(34):23296–23305. [PubMed] [Google Scholar]
  56. Strömstedt P. E., Poellinger L., Gustafsson J. A., Carlstedt-Duke J. The glucocorticoid receptor binds to a sequence overlapping the TATA box of the human osteocalcin promoter: a potential mechanism for negative regulation. Mol Cell Biol. 1991 Jun;11(6):3379–3383. doi: 10.1128/mcb.11.6.3379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Tenenbaum H. C., Heersche J. N. Dexamethasone stimulates osteogenesis in chick periosteum in vitro. Endocrinology. 1985 Nov;117(5):2211–2217. doi: 10.1210/endo-117-5-2211. [DOI] [PubMed] [Google Scholar]
  58. Umesono K., Murakami K. K., Thompson C. C., Evans R. M. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell. 1991 Jun 28;65(7):1255–1266. doi: 10.1016/0092-8674(91)90020-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Yao K. L., Todescan R., Jr, Sodek J. Temporal changes in matrix protein synthesis and mRNA expression during mineralized tissue formation by adult rat bone marrow cells in culture. J Bone Miner Res. 1994 Feb;9(2):231–240. doi: 10.1002/jbmr.5650090212. [DOI] [PubMed] [Google Scholar]
  60. Zhang Q., Domenicucci C., Goldberg H. A., Wrana J. L., Sodek J. Characterization of fetal porcine bone sialoproteins, secreted phosphoprotein I (SPPI, osteopontin), bone sialoprotein, and a 23-kDa glycoprotein. Demonstration that the 23-kDa glycoprotein is derived from the carboxyl terminus of SPPI. J Biol Chem. 1990 May 5;265(13):7583–7589. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES