Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Aug 15;318(Pt 1):235–240. doi: 10.1042/bj3180235

Acetate represents a major product of heptanoate and octanoate beta-oxidation in hepatocytes isolated from neonatal piglets.

X Lin 1, S H Adams 1, J Odle 1
PMCID: PMC1217613  PMID: 8761477

Abstract

An experiment was conducted to explore the nature of the radiolabel distribution in acid-soluble products (ASPs) resulting from the oxidation of [1-14C]C7:0 or C8:0 by isolated piglet hepatocytes. The differences between odd and even chain-length and the impacts of valproate and malonate upon the rate of beta-oxidation and ASP characteristics were tested. A minor amount of fatty acid carboxyl carbon (< or = 10% of organic acids identified by radio-HPLC) accumulated in ketone bodies regardless of chain-length or inhibitor used. In all cases, acetate represented the major reservoir of carboxyl carbon, accounting for 60-70% of radiolabel in identified organic acids. Cells given [1-14C]C7:0 accumulated 85% more carboxyl carbon in Krebs cycle intermediates when compared with C8:0, while accumulation in acetate was unaffected. The results are consistent with the hypothesis that anaplerosis from odd-carbon fatty acids affects the oxidative fate of fatty acid carbon. The piglet appears unique in that non-ketogenic routes of fatty acid carbon flow (i.e. acetogenesis) predominate in the liver of this species.

Full Text

The Full Text of this article is available as a PDF (394.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams S. H., Odle J. Plasma beta-hydroxybutyrate after octanoate challenge: attenuated ketogenic capacity in neonatal swine. Am J Physiol. 1993 Oct;265(4 Pt 2):R761–R765. doi: 10.1152/ajpregu.1993.265.4.R761. [DOI] [PubMed] [Google Scholar]
  2. Akanji A. O., Humphreys S., Thursfield V., Hockaday T. D. The relationship of plasma acetate with glucose and other blood intermediary metabolites in non-diabetic and diabetic subjects. Clin Chim Acta. 1989 Oct 31;185(1):25–34. doi: 10.1016/0009-8981(89)90127-7. [DOI] [PubMed] [Google Scholar]
  3. Bach A., Guisard D., Debry G., Metais P. Metabolic effects following a medium chain triglycerides load in dogs. V. Influence of the perfusion rate. Arch Int Physiol Biochim. 1974 Oct;82(4):705–719. doi: 10.3109/13813457409072323. [DOI] [PubMed] [Google Scholar]
  4. Becker C. M., Harris R. A. Influence of valproic acid on hepatic carbohydrate and lipid metabolism. Arch Biochem Biophys. 1983 Jun;223(2):381–392. doi: 10.1016/0003-9861(83)90602-1. [DOI] [PubMed] [Google Scholar]
  5. Bengtsson G., Gentz J., Hakkarainen J., Hellström R., Persson B. Plasma levels of FFA, glycerol, beta-hydroxybutyrate and blood glucose during the postnatal development of the pig. J Nutr. 1969 Mar;97(3):311–315. doi: 10.1093/jn/97.3.311. [DOI] [PubMed] [Google Scholar]
  6. Billiar R. B., Knappenberger M., Little B. Xanthine oxidase for calibration of the oxygen electrode apparatus. Anal Biochem. 1970 Jul;36(1):101–104. doi: 10.1016/0003-2697(70)90336-2. [DOI] [PubMed] [Google Scholar]
  7. Buckley B. M., Williamson D. H. Origins of blood acetate in the rat. Biochem J. 1977 Sep 15;166(3):539–545. doi: 10.1042/bj1660539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Corkey B. E., Hale D. E., Glennon M. C., Kelley R. I., Coates P. M., Kilpatrick L., Stanley C. A. Relationship between unusual hepatic acyl coenzyme A profiles and the pathogenesis of Reye syndrome. J Clin Invest. 1988 Sep;82(3):782–788. doi: 10.1172/JCI113679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coudé F. X., Grimber G., Pelet A., Benoit Y. Action of the antiepileptic drug, valproic acid, on fatty acid oxidation in isolated rat hepatocytes. Biochem Biophys Res Commun. 1983 Sep 15;115(2):730–736. doi: 10.1016/s0006-291x(83)80205-8. [DOI] [PubMed] [Google Scholar]
  10. Duee P. H., Pegorier J. P., el Manoubi L., Herbin C., Kohl C., Girard J. Hepatic triglyceride hydrolysis and development of ketogenesis in rabbits. Am J Physiol. 1985 Nov;249(5 Pt 1):E478–E484. doi: 10.1152/ajpendo.1985.249.5.E478. [DOI] [PubMed] [Google Scholar]
  11. Duée P. H., Pégorier J. P., Bois-Joyeux B., Girard J. Fuel metabolism and energy stores in fasting or suckling newborn guinea pigs. J Dev Physiol. 1983 Dec;5(6):383–393. [PubMed] [Google Scholar]
  12. Duée P. H., Pégorier J. P., Quant P. A., Herbin C., Kohl C., Girard J. Hepatic ketogenesis in newborn pigs is limited by low mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase activity. Biochem J. 1994 Feb 15;298(Pt 1):207–212. doi: 10.1042/bj2980207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ferré P., Pégorier J. P., Williamson D. H., Girard J. Interactions in vivo between oxidation of non-esterified fatty acids and gluconeogenesis in the newborn rat. Biochem J. 1979 Aug 15;182(2):593–598. doi: 10.1042/bj1820593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Foster P. C., Bailey E. Changes in hepatic fatty acid degradation and blood lipid and ketone body content during development of the rat. Enzyme. 1976;21(5):397–407. doi: 10.1159/000458889. [DOI] [PubMed] [Google Scholar]
  15. Frost S. C., Wells M. A. A comparison of the utilization of medium and long-chain fatty acids for oxidation and ketogenesis in the suckling rat: in vivo and in vitro studies. Arch Biochem Biophys. 1981 Oct 15;211(2):537–546. doi: 10.1016/0003-9861(81)90488-4. [DOI] [PubMed] [Google Scholar]
  16. Ito M., Ikeda Y., Arnez J. G., Finocchiaro G., Tanaka K. The enzymatic basis for the metabolism and inhibitory effects of valproic acid: dehydrogenation of valproyl-CoA by 2-methyl-branched-chain acyl-CoA dehydrogenase. Biochim Biophys Acta. 1990 May 16;1034(2):213–218. doi: 10.1016/0304-4165(90)90079-c. [DOI] [PubMed] [Google Scholar]
  17. Knowles S. E., Jarrett I. G., Filsell O. H., Ballard F. J. Production and utilization of acetate in mammals. Biochem J. 1974 Aug;142(2):401–411. doi: 10.1042/bj1420401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Krane E. J. Diabetic ketoacidosis. Biochemistry, physiology, treatment, and prevention. Pediatr Clin North Am. 1987 Aug;34(4):935–960. doi: 10.1016/s0031-3955(16)36296-4. [DOI] [PubMed] [Google Scholar]
  19. Lepine A. J., Watford M., Boyd R. D., Ross D. A., Whitehead D. M. Relationship between hepatic fatty acid oxidation and gluconeogenesis in the fasting neonatal pig. Br J Nutr. 1993 Jul;70(1):81–91. doi: 10.1079/bjn19930106. [DOI] [PubMed] [Google Scholar]
  20. McGarry J. D., Takabayashi Y., Foster D. W. The role of malonyl-coa in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes. J Biol Chem. 1978 Nov 25;253(22):8294–8300. [PubMed] [Google Scholar]
  21. Millington D. S., Bohan T. P., Roe C. R., Yergey A. L., Liberato D. J. Valproylcarnitine: a novel drug metabolite identified by fast atom bombardment and thermospray liquid chromatography-mass spectrometry. Clin Chim Acta. 1985 Jan 15;145(1):69–76. doi: 10.1016/0009-8981(85)90020-8. [DOI] [PubMed] [Google Scholar]
  22. Odle J., Benevenga N. J., Crenshaw T. D. Postnatal age and the metabolism of medium- and long-chain fatty acids by isolated hepatocytes from small-for-gestational-age and appropriate-for-gestational-age piglets. J Nutr. 1991 May;121(5):615–621. doi: 10.1093/jn/121.5.615. [DOI] [PubMed] [Google Scholar]
  23. Odle J., Benevenga N. J., Crenshaw T. D. Utilization of medium-chain triglycerides by neonatal piglets: II. Effects of even- and odd-chain triglyceride consumption over the first 2 days of life on blood metabolites and urinary nitrogen excretion. J Anim Sci. 1989 Dec;67(12):3340–3351. doi: 10.2527/jas1989.67123340x. [DOI] [PubMed] [Google Scholar]
  24. Odle J., Benevenga N. J., Crenshaw T. D. Utilization of medium-chain triglycerides by neonatal piglets: chain length of even- and odd-carbon fatty acids and apparent digestion/absorption and hepatic metabolism. J Nutr. 1991 May;121(5):605–614. doi: 10.1093/jn/121.5.605. [DOI] [PubMed] [Google Scholar]
  25. Odle J., Lin X., van Kempen T. A., Drackley J. K., Adams S. H. Carnitine palmitoyltransferase modulation of hepatic fatty acid metabolism and radio-HPLC evidence for low ketogenesis in neonatal pigs. J Nutr. 1995 Oct;125(10):2541–2549. doi: 10.1093/jn/125.10.2541. [DOI] [PubMed] [Google Scholar]
  26. Owen O. E., Morgan A. P., Kemp H. G., Sullivan J. M., Herrera M. G., Cahill G. F., Jr Brain metabolism during fasting. J Clin Invest. 1967 Oct;46(10):1589–1595. doi: 10.1172/JCI105650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pegorier J. P., Simoes-Nunes C., Duee P. H., Peret J., Girard J. Effect of intragastric triglyceride administration on glucose homeostasis in newborn pigs. Am J Physiol. 1985 Sep;249(3 Pt 1):E268–E275. doi: 10.1152/ajpendo.1985.249.3.E268. [DOI] [PubMed] [Google Scholar]
  28. Pi-Sunyer F. X., Hashim S. A., Van Itallie T. B. Insulin and ketone responses to ingestion of medium and long-chain triglycerides in man. Diabetes. 1969 Feb;18(2):96–100. doi: 10.2337/diab.18.2.96. [DOI] [PubMed] [Google Scholar]
  29. Pourfarzam M., Bartlett K. Products and intermediates of the beta-oxidation of [U-14C]hexadecanedionoyl-mono-CoA by rat liver peroxisomes and mitochondria. Biochem J. 1991 Jan 1;273(Pt 1):205–210. doi: 10.1042/bj2730205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pégorier J. P., Duée P. H., Assan R., Peret J., Girard J. Changes in circulating fuels, pancreatic hormones and liver glycogen concentration in fasting or suckling newborn pigs. J Dev Physiol. 1981 Jun;3(3):203–217. [PubMed] [Google Scholar]
  31. Pégorier J. P., Duée P. H., Clouet P., Kohl C., Herbin C., Girard J. Octanoate metabolism in isolated hepatocytes and mitochondria from fetal, newborn and adult rabbit. Evidence for a high capacity for octanoate esterification in term fetal liver. Eur J Biochem. 1989 Oct 1;184(3):681–686. doi: 10.1111/j.1432-1033.1989.tb15067.x. [DOI] [PubMed] [Google Scholar]
  32. Pégorier J. P., Duée P. H., Girard J., Peret J. Metabolic fate of non-esterified fatty acids in isolated hepatocytes from newborn and young pigs. Evidence for a limited capacity for oxidation and increased capacity for esterification. Biochem J. 1983 Apr 15;212(1):93–97. doi: 10.1042/bj2120093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Scheppach W., Pomare E. W., Elia M., Cummings J. H. The contribution of the large intestine to blood acetate in man. Clin Sci (Lond) 1991 Feb;80(2):177–182. doi: 10.1042/cs0800177. [DOI] [PubMed] [Google Scholar]
  34. Thurston J. H., Carroll J. E., Hauhart R. E., Schiro J. A. A single therapeutic dose of valproate affects liver carbohydrate, fat, adenylate, amino acid, coenzyme A, and carnitine metabolism in infant mice: possible clinical significance. Life Sci. 1985 Apr 29;36(17):1643–1651. doi: 10.1016/0024-3205(85)90367-4. [DOI] [PubMed] [Google Scholar]
  35. Thurston J. H., Hauhart R. E. Amelioration of adverse effects of valproic acid on ketogenesis and liver coenzyme A metabolism by cotreatment with pantothenate and carnitine in developing mice: possible clinical significance. Pediatr Res. 1992 Apr;31(4 Pt 1):419–423. doi: 10.1203/00006450-199204000-00023. [DOI] [PubMed] [Google Scholar]
  36. Watmough N. J., Bhuiyan A. K., Bartlett K., Sherratt H. S., Turnbull D. M. Skeletal muscle mitochondrial beta-oxidation. A study of the products of oxidation of [U-14C]hexadecanoate by h.p.l.c. using continuous on-line radiochemical detection. Biochem J. 1988 Jul 15;253(2):541–547. doi: 10.1042/bj2530541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. van Kempen T. A., Odle J. Carnitine affects octanoate oxidation to carbon dioxide and dicarboxylic acids in colostrum-deprived piglets: in vivo analysis of mechanisms involved based on CoA- and carnitine-ester profiles. J Nutr. 1995 Feb;125(2):238–250. doi: 10.1093/jn/125.2.238. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES