Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Aug 15;318(Pt 1):271–278. doi: 10.1042/bj3180271

Methylamine decreases trafficking and packaging of newly synthesized phosphatidylcholine in lamellar bodies in alveolar type II cells.

A Chander 1, N Sen 1, A M Wu 1, S Higgins 1, S Wadsworth 1, A R Spitzer 1
PMCID: PMC1217618  PMID: 8761482

Abstract

Lung lamellar bodies, the storage organelles for lung surfactant phosphatidylcholine (PC), maintain an acidic pH that can be increased with weak bases. This study investigates the effect of a weak base, methylamine, on the pH in lamellar bodies and on the trafficking and packaging of newly synthesized PC in lamellar bodies. Methylamine increased the pH of isolated lung lamellar bodies and of lamellar bodies in intact cells. Metabolic labelling of isolated type II cells with [methyl-3H]choline showed that although methylamine (2.5-10 mM) did not alter the labelling of cellular or microsomal PC and disaturated PC, it decreased the labelling of the PC and disaturated PC in lamellar bodies. The packaging of PC in lamellar bodies (the specific activities ratio between the PC in lamellar bodies and the microsomal PC) also decreased in a time- and concentration-dependent manner. The cellular synthesis of PC or its packaging into lamellar bodies was unaltered by brefeldin A, suggesting that the Golgi was not involved in PC packaging. Although methylamine also increased surfactant secretion, the inhibition of PC packaging in lamellar bodies seems unrelated to the secretagogue effect, (1) on the basis of metabolic consequences of increased secretion and (2) because ATP, another secretagogue, did not inhibit PC packaging. Methylamine seems to inhibit PC packaging by inhibiting trafficking of PC to lipid-rich light subcellular fractions. Together our results suggest that the trafficking of surfactant PC into lamellar bodies might be sensitive to changes in the pH of lamellar bodies.

Full Text

The Full Text of this article is available as a PDF (451.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Batenburg J. J. Surfactant phospholipids: synthesis and storage. Am J Physiol. 1992 Apr;262(4 Pt 1):L367–L385. doi: 10.1152/ajplung.1992.262.4.L367. [DOI] [PubMed] [Google Scholar]
  3. Beers M. F., Kim C. Y., Dodia C., Fisher A. B. Localization, synthesis, and processing of surfactant protein SP-C in rat lung analyzed by epitope-specific antipeptide antibodies. J Biol Chem. 1994 Aug 12;269(32):20318–20328. [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Chander A. Dicyclohexylcarbodiimide and vanadate sensitive ATPase of lung lamellar bodies. Biochim Biophys Acta. 1992 Jan 24;1123(2):198–206. doi: 10.1016/0005-2760(92)90112-9. [DOI] [PubMed] [Google Scholar]
  6. Chander A., Dodia C. R., Gil J., Fisher A. B. Isolation of lamellar bodies from rat granular pneumocytes in primary culture. Biochim Biophys Acta. 1983 Aug 29;753(1):119–129. doi: 10.1016/0005-2760(83)90105-4. [DOI] [PubMed] [Google Scholar]
  7. Chander A., Fisher A. B. Choline-phosphate cytidyltransferase activity and phosphatidylcholine synthesis in rat granular pneumocytes are increased with exogenous fatty acids. Biochim Biophys Acta. 1988 Feb 19;958(3):343–351. doi: 10.1016/0005-2760(88)90219-6. [DOI] [PubMed] [Google Scholar]
  8. Chander A., Fisher A. B. Regulation of lung surfactant secretion. Am J Physiol. 1990 Jun;258(6 Pt 1):L241–L253. doi: 10.1152/ajplung.1990.258.6.L241. [DOI] [PubMed] [Google Scholar]
  9. Chander A., Fisher A. B., Strauss J. F., 3rd Role of an acidic compartment in synthesis of disaturated phosphatidylcholine by rat granular pneumocytes. Biochem J. 1982 Dec 15;208(3):651–658. doi: 10.1042/bj2080651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chander A., Johnson R. G., Reicherter J., Fisher A. B. Lung lamellar bodies maintain an acidic internal pH. J Biol Chem. 1986 May 5;261(13):6126–6131. [PubMed] [Google Scholar]
  11. Chander A., Sen N. Inhibition of phosphatidylcholine secretion by stilbene disulfonates in alveolar type II cells. Biochem Pharmacol. 1993 May 5;45(9):1905–1912. doi: 10.1016/0006-2952(93)90450-b. [DOI] [PubMed] [Google Scholar]
  12. Chander A., Wu R. D. In vitro fusion of lung lamellar bodies and plasma membrane is augmented by lung synexin. Biochim Biophys Acta. 1991 Nov 5;1086(2):157–166. doi: 10.1016/0005-2760(91)90003-z. [DOI] [PubMed] [Google Scholar]
  13. Chevalier G., Collet A. J. In vivo incorporation of choline- 3 H, leucine- 3 H and galactose- 3 H in alveolar type II pneumocytes in relation to surfactant synthesis. A quantitative radoautographic study in mouse by electron microscopy. Anat Rec. 1972 Nov;174(3):289–310. doi: 10.1002/ar.1091740303. [DOI] [PubMed] [Google Scholar]
  14. DeGrella R. F., Simoni R. D. Intracellular transport of cholesterol to the plasma membrane. J Biol Chem. 1982 Dec 10;257(23):14256–14262. [PubMed] [Google Scholar]
  15. Dobbs L. G., Gonzalez R., Williams M. C. An improved method for isolating type II cells in high yield and purity. Am Rev Respir Dis. 1986 Jul;134(1):141–145. doi: 10.1164/arrd.1986.134.1.141. [DOI] [PubMed] [Google Scholar]
  16. Fine J. B., Sprecher H. Unidimensional thin-layer chromatography of phospholipids on boric acid-impregnated plates. J Lipid Res. 1982 May;23(4):660–663. [PubMed] [Google Scholar]
  17. Fuchs R., Schmid S., Mellman I. A possible role for Na+,K+-ATPase in regulating ATP-dependent endosome acidification. Proc Natl Acad Sci U S A. 1989 Jan;86(2):539–543. doi: 10.1073/pnas.86.2.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Harikumar P., Reeves J. P. The lysosomal proton pump is electrogenic. J Biol Chem. 1983 Sep 10;258(17):10403–10410. [PubMed] [Google Scholar]
  19. Jobe A., Ikegami M., Sarton-Miller I., Jones S., Yu G. Characterization of phospholipids and localization of some phospholipid synthetic and subcellular marker enzymes in subcellular fractions from rabbit lung. Biochim Biophys Acta. 1981 Oct 23;666(1):47–57. doi: 10.1016/0005-2760(81)90089-8. [DOI] [PubMed] [Google Scholar]
  20. Jobe A. The labeling and biological half-life of phosphatidylcholine in subcellular fractions of rabbit lung. Biochim Biophys Acta. 1977 Dec 21;489(3):440–453. doi: 10.1016/0005-2760(77)90165-5. [DOI] [PubMed] [Google Scholar]
  21. Kalina M., Socher R. Endocytosis in cultured rat alveolar type II cells: effect of lysosomotropic weak bases on the processes. J Histochem Cytochem. 1991 Oct;39(10):1337–1348. doi: 10.1177/39.10.1658127. [DOI] [PubMed] [Google Scholar]
  22. Kaplan M. R., Simoni R. D. Intracellular transport of phosphatidylcholine to the plasma membrane. J Cell Biol. 1985 Aug;101(2):441–445. doi: 10.1083/jcb.101.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LEE Y. P., LARDY H. A. INFLUENCE OF THYROID HORMONES ON L-ALPHA-GLYCEROPHOSPHATE DEHYDROGENASES AND OTHER DEHYDROGENASES IN VARIOUS ORGANS OF THE RAT. J Biol Chem. 1965 Mar;240:1427–1436. [PubMed] [Google Scholar]
  24. Low S. H., Wong S. H., Tang B. L., Tan P., Subramaniam V. N., Hong W. Inhibition by brefeldin A of protein secretion from the apical cell surface of Madin-Darby canine kidney cells. J Biol Chem. 1991 Sep 25;266(27):17729–17732. [PubMed] [Google Scholar]
  25. Mason R. J., Nellenbogen J., Clements J. A. Isolation of disaturated phosphatidylcholine with osmium tetroxide. J Lipid Res. 1976 May;17(3):281–284. [PubMed] [Google Scholar]
  26. Massaro D., Clerch L., Massaro G. D. Surfactant secretion: evidence that cholinergic stimulation of secretion is indirect. Am J Physiol. 1982 Jul;243(1):C39–C45. doi: 10.1152/ajpcell.1982.243.1.C39. [DOI] [PubMed] [Google Scholar]
  27. Murata M., Takahashi S., Kagiwada S., Suzuki A., Ohnishi S. pH-dependent membrane fusion and vesiculation of phospholipid large unilamellar vesicles induced by amphiphilic anionic and cationic peptides. Biochemistry. 1992 Feb 25;31(7):1986–1992. doi: 10.1021/bi00122a013. [DOI] [PubMed] [Google Scholar]
  28. Nord E. P., Brown S. E., Crandall E. D. Cl-/HCO3- exchange modulates intracellular pH in rat type II alveolar epithelial cells. J Biol Chem. 1988 Apr 25;263(12):5599–5606. [PubMed] [Google Scholar]
  29. O'Reilly M. A., Nogee L., Whitsett J. A. Requirement of the collagenous domain for carbohydrate processing and secretion of a surfactant protein, SP-A. Biochim Biophys Acta. 1988 Apr 25;969(2):176–184. doi: 10.1016/0167-4889(88)90073-0. [DOI] [PubMed] [Google Scholar]
  30. PHILLIPS A. H., LANGDON R. G. Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization, and kinetic studies. J Biol Chem. 1962 Aug;237:2652–2660. [PubMed] [Google Scholar]
  31. Pfeffer S. R., Rothman J. E. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu Rev Biochem. 1987;56:829–852. doi: 10.1146/annurev.bi.56.070187.004145. [DOI] [PubMed] [Google Scholar]
  32. Pollard H. B., Burns A. L., Rojas E. Synexin (annexin VII): a cytosolic calcium-binding protein which promotes membrane fusion and forms calcium channels in artificial bilayer and natural membranes. J Membr Biol. 1990 Aug;117(2):101–112. doi: 10.1007/BF01868677. [DOI] [PubMed] [Google Scholar]
  33. Rannels D. E., Dunsmore S. E., Grove R. N. Extracellular matrix synthesis and turnover by type II pulmonary epithelial cells. Am J Physiol. 1992 May;262(5 Pt 1):L582–L589. doi: 10.1152/ajplung.1992.262.5.L582. [DOI] [PubMed] [Google Scholar]
  34. Reijngoud D. J., Tager J. M. The permeability properties of the lysosomal membrane. Biochim Biophys Acta. 1977 Nov 14;472(3-4):419–449. doi: 10.1016/0304-4157(77)90005-3. [DOI] [PubMed] [Google Scholar]
  35. Sleight R. G., Pagano R. E. Rapid appearance of newly synthesized phosphatidylethanolamine at the plasma membrane. J Biol Chem. 1983 Aug 10;258(15):9050–9058. [PubMed] [Google Scholar]
  36. Suwabe A., Mason R. J., Voelker D. R. Temporal segregation of surfactant secretion and lamellar body biogenesis in primary cultures of rat alveolar type II cells. Am J Respir Cell Mol Biol. 1991 Jul;5(1):80–86. doi: 10.1165/ajrcmb/5.1.80. [DOI] [PubMed] [Google Scholar]
  37. Tapper H., Sundler R. Role of lysosomal and cytosolic pH in the regulation of macrophage lysosomal enzyme secretion. Biochem J. 1990 Dec 1;272(2):407–414. doi: 10.1042/bj2720407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tsao F. H. Purification and characterization of two rabbit lung Ca2(+)-dependent phospholipid-binding proteins. Biochim Biophys Acta. 1990 Jun 28;1045(1):29–39. doi: 10.1016/0005-2760(90)90200-h. [DOI] [PubMed] [Google Scholar]
  39. Van Golde L. M., Batenburg J. J., Robertson B. The pulmonary surfactant system: biochemical aspects and functional significance. Physiol Rev. 1988 Apr;68(2):374–455. doi: 10.1152/physrev.1988.68.2.374. [DOI] [PubMed] [Google Scholar]
  40. Vance J. E., Aasman E. J., Szarka R. Brefeldin A does not inhibit the movement of phosphatidylethanolamine from its sites for synthesis to the cell surface. J Biol Chem. 1991 May 5;266(13):8241–8247. [PubMed] [Google Scholar]
  41. Yeh H. I., van Rossum G. D. Proton accumulation and ATPase activity in Golgi apparatus-enriched vesicles from rat liver. Hepatology. 1991 Mar;13(3):523–533. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES