Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Aug 15;318(Pt 1):291–296. doi: 10.1042/bj3180291

Sequence of bovine carbonic anhydrase VI: potential recognition sites for N-acetylgalactosaminyltransferase.

W Jiang 1, J T Woitach 1, D Gupta 1
PMCID: PMC1217630  PMID: 8761494

Abstract

Carbonic anhydrases (CAs I-VII) are products of a gene family that encodes seven isoenzymes and several CA-related proteins. We report the cloning and sequencing of the cDNA clones encoding one of these isoenzymes, CA VI, from bovine submaxillary gland. The translated polypeptide consists of 319 amino acids, including a signal peptide (14 amino acids) typical of secreted proteins. The predicted mature protein contains 305 amino acids including a 13-amino-acid C-terminal sequence that is also present in the sheep but absent in human CA VI. The deduced mature bovine protein is 87% and 68% identical to that of sheep and human CA VI, respectively. Active-site residues of the enzyme, as well as the three zinc-binding histidines and the two cysteines involved in an intra-chain disulphide bond, are all conserved in the three species. Two potential Asn-glycosylation sites are also conserved, both of which appear to be glycosylated in sheep and bovine CA VI. Two potential peptide recognition sequences are present in bovine CA VI for the glycoprotein hormone: N-acetylgalactosaminyltransferase (GalNAc-transferase), which is one of the two transferases required to form GalNAc-4-SO4 in bovine CA VI-linked oligosaccharides. Specifically, these two sequences are Asp-Leu-Lys-Met-Lys-Lys and Ile-Thr-Lys-Arg-Lys-Lys. Comparison of these sequences with sheep and human CA VI sequences indicates that distinct glycoforms of CA VI could exist in submaxillary gland from different species.

Full Text

The Full Text of this article is available as a PDF (717.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldred P., Fu P., Barrett G., Penschow J. D., Wright R. D., Coghlan J. P., Fernley R. T. Human secreted carbonic anhydrase: cDNA cloning, nucleotide sequence, and hybridization histochemistry. Biochemistry. 1991 Jan 15;30(2):569–575. doi: 10.1021/bi00216a035. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Baenziger J. U., Kumar S., Brodbeck R. M., Smith P. L., Beranek M. C. Circulatory half-life but not interaction with the lutropin/chorionic gonadotropin receptor is modulated by sulfation of bovine lutropin oligosaccharides. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):334–338. doi: 10.1073/pnas.89.1.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bause E. Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J. 1983 Feb 1;209(2):331–336. doi: 10.1042/bj2090331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhargava A. K., Woitach J. T., Davidson E. A., Bhavanandan V. P. Cloning and cDNA sequence of a bovine submaxillary gland mucin-like protein containing two distinct domains. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6798–6802. doi: 10.1073/pnas.87.17.6798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fernley R. T., Coghlan J. P., Wright R. D. Purification and characterization of a high-Mr carbonic anhydrase from sheep parotid gland. Biochem J. 1988 Jan 1;249(1):201–207. doi: 10.1042/bj2490201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fernley R. T., Darling P., Aldred P., Wright R. D., Coghlan J. P. Tissue and species distribution of the secreted carbonic anhydrase isoenzyme. Biochem J. 1989 Apr 1;259(1):91–96. doi: 10.1042/bj2590091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fernley R. T., Wright R. D., Coghlan J. P. A novel carbonic anhydrase from the ovine parotid gland. FEBS Lett. 1979 Sep 15;105(2):299–302. doi: 10.1016/0014-5793(79)80634-1. [DOI] [PubMed] [Google Scholar]
  9. Fernley R. T., Wright R. D., Coghlan J. P. Complete amino acid sequence of ovine salivary carbonic anhydrase. Biochemistry. 1988 Apr 19;27(8):2815–2820. doi: 10.1021/bi00408a023. [DOI] [PubMed] [Google Scholar]
  10. Fiete D., Srivastava V., Hindsgaul O., Baenziger J. U. A hepatic reticuloendothelial cell receptor specific for SO4-4GalNAc beta 1,4GlcNAc beta 1,2Man alpha that mediates rapid clearance of lutropin. Cell. 1991 Dec 20;67(6):1103–1110. doi: 10.1016/0092-8674(91)90287-9. [DOI] [PubMed] [Google Scholar]
  11. Green E. D., van Halbeek H., Boime I., Baenziger J. U. Structural elucidation of the disulfated oligosaccharide from bovine lutropin. J Biol Chem. 1985 Dec 15;260(29):15623–15630. [PubMed] [Google Scholar]
  12. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  13. Han J. H., Stratowa C., Rutter W. J. Isolation of full-length putative rat lysophospholipase cDNA using improved methods for mRNA isolation and cDNA cloning. Biochemistry. 1987 Mar 24;26(6):1617–1625. doi: 10.1021/bi00380a020. [DOI] [PubMed] [Google Scholar]
  14. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  15. Hooper L. V., Beranek M. C., Manzella S. M., Baenziger J. U. Differential expression of GalNAc-4-sulfotransferase and GalNAc-transferase results in distinct glycoforms of carbonic anhydrase VI in parotid and submaxillary glands. J Biol Chem. 1995 Mar 17;270(11):5985–5993. doi: 10.1074/jbc.270.11.5985. [DOI] [PubMed] [Google Scholar]
  16. Kozak M. An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol. 1991 Nov;115(4):887–903. doi: 10.1083/jcb.115.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lapthorn A. J., Harris D. C., Littlejohn A., Lustbader J. W., Canfield R. E., Machin K. J., Morgan F. J., Isaacs N. W. Crystal structure of human chorionic gonadotropin. Nature. 1994 Jun 9;369(6480):455–461. doi: 10.1038/369455a0. [DOI] [PubMed] [Google Scholar]
  18. Manzella S. M., Dharmesh S. M., Beranek M. C., Swanson P., Baenziger J. U. Evolutionary conservation of the sulfated oligosaccharides on vertebrate glycoprotein hormones that control circulatory half-life. J Biol Chem. 1995 Sep 15;270(37):21665–21671. doi: 10.1074/jbc.270.37.21665. [DOI] [PubMed] [Google Scholar]
  19. Marshall R. D. Glycoproteins. Annu Rev Biochem. 1972;41:673–702. doi: 10.1146/annurev.bi.41.070172.003325. [DOI] [PubMed] [Google Scholar]
  20. Mengeling B. J., Manzella S. M., Baenziger J. U. A cluster of basic amino acids within an alpha-helix is essential for alpha-subunit recognition by the glycoprotein hormone N-acetylgalactosaminyltransferase. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):502–506. doi: 10.1073/pnas.92.2.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Murakami H., Sly W. S. Purification and characterization of human salivary carbonic anhydrase. J Biol Chem. 1987 Jan 25;262(3):1382–1388. [PubMed] [Google Scholar]
  22. Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
  23. Proudfoot N. J., Brownlee G. G. 3' non-coding region sequences in eukaryotic messenger RNA. Nature. 1976 Sep 16;263(5574):211–214. doi: 10.1038/263211a0. [DOI] [PubMed] [Google Scholar]
  24. Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
  25. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sciaky M., Limozin N., Filippi-Foveau D., Gulian J. M., Laurent-Tabusse G. Structure primaire de l'anhydrase carbonique érythrocytaire bovine CI. II. Séquence complète. Biochimie. 1976 Nov 13;58(9):1071–1082. doi: 10.1016/s0300-9084(76)80085-5. [DOI] [PubMed] [Google Scholar]
  28. Sly W. S., Hu P. Y. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem. 1995;64:375–401. doi: 10.1146/annurev.bi.64.070195.002111. [DOI] [PubMed] [Google Scholar]
  29. Smith P. L., Baenziger J. U. Molecular basis of recognition by the glycoprotein hormone-specific N-acetylgalactosamine-transferase. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):329–333. doi: 10.1073/pnas.89.1.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stockell Hartree A., Renwick A. G. Molecular structures of glycoprotein hormones and functions of their carbohydrate components. Biochem J. 1992 Nov 1;287(Pt 3):665–679. doi: 10.1042/bj2870665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wu H., Lustbader J. W., Liu Y., Canfield R. E., Hendrickson W. A. Structure of human chorionic gonadotropin at 2.6 A resolution from MAD analysis of the selenomethionyl protein. Structure. 1994 Jun 15;2(6):545–558. doi: 10.1016/s0969-2126(00)00054-x. [DOI] [PubMed] [Google Scholar]
  32. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES