Abstract
Biotin-labelled peptidyl diazomethane inhibitors of cysteine proteinases, based on the N-terminal substrate-like segment of human cystatin C, a natural inhibitor of cysteine proteinases, were synthesized. These synthetic derivatives were tested as irreversible inhibitors of cruzipain, the major cysteine proteinase of Trypanosoma cruzi, to compare the kinetics of the inhibition of the parasite proteinase with that of the mammalian cathepsins B and L. The accessibility of the active sites of these proteinases to these probes was also investigated. The inhibition of cruzipain by Biot-LVG-CHN2 (where Biot represents biotinyl and L,V and G are single-letter amino acid residue abbreviations) and Biot-Ahx-LVG-CHN2 (where Ahx represents 6-aminohexanoic acid) was similar to that of unlabelled inhibitor. Biotin labelling of the inhibitor slowed the inhibition of both cathepsin B and cathepsin L. Adding a spacer arm (Ahx) between the biotin and the peptide moiety of the derivative increased the inhibition of cathepsin B but not that of cathepsin L. The discrimination provided by this spacer is probably due to differences in the topologies of the binding sites of proteinases, a feature that can be exploited to improve targeting of individual cysteine proteinases. Analysis of the blotted proteinases revealed marked differences in the accessibility of extravidin-peroxidase conjugate to the proteinase-bound biotinylated inhibitor. Cruzipain molecules exposed to Biot-LVG-CHN2 or Biot-Ahx-LVG-CHN2 were readily identified, but the reaction was much stronger when the enzyme was treated with the spacer-containing inhibitor. In contrast with the parasite enzyme, rat cathepsin B and cathepsin L treated with either Biot-LVG-CHN2 or Biot-Ahx-LVG-CHN2 produced no detectable bands. Papain, the archetype of this family of proteinases, was poorly labelled with Biot-LVG-CHN2, but strong staining was obtained with Biot-Ahx-LVG-CHN2. These findings suggest that optimized biotinylated diazomethanes might considerably improve their selectivity for the T. cruzi target enzyme.
Full Text
The Full Text of this article is available as a PDF (335.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aslund L., Henriksson J., Campetella O., Frasch A. C., Pettersson U., Cazzulo J. J. The C-terminal extension of the major cysteine proteinase (cruzipain) from Trypanosoma cruzi. Mol Biochem Parasitol. 1991 Apr;45(2):345–347. doi: 10.1016/0166-6851(91)90103-d. [DOI] [PubMed] [Google Scholar]
- Barrett A. J., Kembhavi A. A., Brown M. A., Kirschke H., Knight C. G., Tamai M., Hanada K. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem J. 1982 Jan 1;201(1):189–198. doi: 10.1042/bj2010189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonaldo M. C., d'Escoffier L. N., Salles J. M., Goldenberg S. Characterization and expression of proteases during Trypanosoma cruzi metacyclogenesis. Exp Parasitol. 1991 Jul;73(1):44–51. doi: 10.1016/0014-4894(91)90006-i. [DOI] [PubMed] [Google Scholar]
- Campetella O., Henriksson J., Aslund L., Frasch A. C., Pettersson U., Cazzulo J. J. The major cysteine proteinase (cruzipain) from Trypanosoma cruzi is encoded by multiple polymorphic tandemly organized genes located on different chromosomes. Mol Biochem Parasitol. 1992 Feb;50(2):225–234. doi: 10.1016/0166-6851(92)90219-a. [DOI] [PubMed] [Google Scholar]
- Cazzulo J. J., Couso R., Raimondi A., Wernstedt C., Hellman U. Further characterization and partial amino acid sequence of a cysteine proteinase from Trypanosoma cruzi. Mol Biochem Parasitol. 1989 Feb;33(1):33–41. doi: 10.1016/0166-6851(89)90039-x. [DOI] [PubMed] [Google Scholar]
- Eakin A. E., Mills A. A., Harth G., McKerrow J. H., Craik C. S. The sequence, organization, and expression of the major cysteine protease (cruzain) from Trypanosoma cruzi. J Biol Chem. 1992 Apr 15;267(11):7411–7420. [PubMed] [Google Scholar]
- Gauthier F., Moreau T., Lalmanach G., Brillard-Bourdet M., Ferrer-Di Martino M., Juliano L. A new, sensitive fluorogenic substrate for papain based on the sequence of the cystatin inhibitory site. Arch Biochem Biophys. 1993 Nov 1;306(2):304–308. doi: 10.1006/abbi.1993.1516. [DOI] [PubMed] [Google Scholar]
- Green G. D., Shaw E. Peptidyl diazomethyl ketones are specific inactivators of thiol proteinases. J Biol Chem. 1981 Feb 25;256(4):1923–1928. [PubMed] [Google Scholar]
- Hall A., Abrahamson M., Grubb A., Trojnar J., Kania P., Kasprzykowska R., Kasprzykowski F. Cystatin C based peptidyl diazomethanes as cysteine proteinase inhibitors: influence of the peptidyl chain length. J Enzyme Inhib. 1992;6(2):113–123. doi: 10.3109/14756369209040742. [DOI] [PubMed] [Google Scholar]
- Harth G., Andrews N., Mills A. A., Engel J. C., Smith R., McKerrow J. H. Peptide-fluoromethyl ketones arrest intracellular replication and intercellular transmission of Trypanosoma cruzi. Mol Biochem Parasitol. 1993 Mar;58(1):17–24. doi: 10.1016/0166-6851(93)90086-d. [DOI] [PubMed] [Google Scholar]
- Hellman U., Wernstedt C., Cazzulo J. J. Self-proteolysis of the cysteine proteinase, cruzipain, from Trypanosoma cruzi gives a major fragment corresponding to its carboxy-terminal domain. Mol Biochem Parasitol. 1991 Jan;44(1):15–21. doi: 10.1016/0166-6851(91)90216-s. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lalmanach G., Serveau C., Brillard-Bourdet M., Chagas J. R., Mayer R., Juliano L., Gauthier F. Conserved cystatin segments as models for designing specific substrates and inhibitors of cysteine proteinases. J Protein Chem. 1995 Nov;14(8):645–653. doi: 10.1007/BF01886903. [DOI] [PubMed] [Google Scholar]
- Lima A. P., Scharfstein J., Storer A. C., Ménard R. Temperature-dependent substrate inhibition of the cysteine proteinase (GP57/51) from Trypanosoma cruzi. Mol Biochem Parasitol. 1992 Dec;56(2):335–338. doi: 10.1016/0166-6851(92)90183-k. [DOI] [PubMed] [Google Scholar]
- Lima A. P., Tessier D. C., Thomas D. Y., Scharfstein J., Storer A. C., Vernet T. Identification of new cysteine protease gene isoforms in Trypanosoma cruzi. Mol Biochem Parasitol. 1994 Oct;67(2):333–338. doi: 10.1016/0166-6851(94)00144-8. [DOI] [PubMed] [Google Scholar]
- Livnah O., Bayer E. A., Wilchek M., Sussman J. L. Three-dimensional structures of avidin and the avidin-biotin complex. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5076–5080. doi: 10.1073/pnas.90.11.5076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsumoto K., Murata M., Sumiya S., Kitamura K., Ishida T. Clarification of substrate specificity of papain by crystal analyses of complexes with covalent-type inhibitors. Biochim Biophys Acta. 1994 Oct 19;1208(2):268–276. doi: 10.1016/0167-4838(94)90113-9. [DOI] [PubMed] [Google Scholar]
- McGrath M. E., Eakin A. E., Engel J. C., McKerrow J. H., Craik C. S., Fletterick R. J. The crystal structure of cruzain: a therapeutic target for Chagas' disease. J Mol Biol. 1995 Mar 24;247(2):251–259. doi: 10.1006/jmbi.1994.0137. [DOI] [PubMed] [Google Scholar]
- McKerrow J. H., McGrath M. E., Engel J. C. The cysteine protease of Trypanosoma cruzi as a model for antiparasite drug design. Parasitol Today. 1995 Aug;11(8):279–282. doi: 10.1016/0169-4758(95)80039-5. [DOI] [PubMed] [Google Scholar]
- McKerrow J. H., Sun E., Rosenthal P. J., Bouvier J. The proteases and pathogenicity of parasitic protozoa. Annu Rev Microbiol. 1993;47:821–853. doi: 10.1146/annurev.mi.47.100193.004133. [DOI] [PubMed] [Google Scholar]
- Meirelles M. N., Juliano L., Carmona E., Silva S. G., Costa E. M., Murta A. C., Scharfstein J. Inhibitors of the major cysteinyl proteinase (GP57/51) impair host cell invasion and arrest the intracellular development of Trypanosoma cruzi in vitro. Mol Biochem Parasitol. 1992 Jun;52(2):175–184. doi: 10.1016/0166-6851(92)90050-t. [DOI] [PubMed] [Google Scholar]
- Moreau T., Esnard F., Gutman N., Degand P., Gauthier F. Cysteine-proteinase-inhibiting function of T kininogen and of its proteolytic fragments. Eur J Biochem. 1988 Apr 5;173(1):185–190. doi: 10.1111/j.1432-1033.1988.tb13983.x. [DOI] [PubMed] [Google Scholar]
- Murta A. C., Persechini P. M., Padron T. de S., de Souza W., Guimarães J. A., Scharfstein J. Structural and functional identification of GP57/51 antigen of Trypanosoma cruzi as a cysteine proteinase. Mol Biochem Parasitol. 1990 Nov;43(1):27–38. doi: 10.1016/0166-6851(90)90127-8. [DOI] [PubMed] [Google Scholar]
- Musil D., Zucic D., Turk D., Engh R. A., Mayr I., Huber R., Popovic T., Turk V., Towatari T., Katunuma N. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 1991 Sep;10(9):2321–2330. doi: 10.1002/j.1460-2075.1991.tb07771.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- North M. J., Mottram J. C., Coombs G. H. Cysteine proteinases of parasitic protozoa. Parasitol Today. 1990 Aug;6(8):270–275. doi: 10.1016/0169-4758(90)90189-b. [DOI] [PubMed] [Google Scholar]
- Rawlings N. D., Barrett A. J. Families of cysteine peptidases. Methods Enzymol. 1994;244:461–486. doi: 10.1016/0076-6879(94)44034-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scharfstein J., Rodrigues M. M., Alves C. A., de Souza W., Previato J. O., Mendonça-Previato L. Trypanosoma cruzi: description of a highly purified surface antigen defined by human antibodies. J Immunol. 1983 Aug;131(2):972–976. [PubMed] [Google Scholar]
- Serveau C., Juliano L., Bernard P., Moreau T., Mayer R., Gauthier F. New substrates of papain, based on the conserved sequence of natural inhibitors of the cystatin family. Biochimie. 1994;76(2):153–158. doi: 10.1016/0300-9084(94)90007-8. [DOI] [PubMed] [Google Scholar]
- Serveau C., Lalmanach G., Juliano M. A., Scharfstein J., Juliano L., Gauthier F. Investigation of the substrate specificity of cruzipain, the major cysteine proteinase of Trypanosoma cruzi, through the use of cystatin-derived substrates and inhibitors. Biochem J. 1996 Feb 1;313(Pt 3):951–956. doi: 10.1042/bj3130951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaw E. Cysteinyl proteinases and their selective inactivation. Adv Enzymol Relat Areas Mol Biol. 1990;63:271–347. doi: 10.1002/9780470123096.ch5. [DOI] [PubMed] [Google Scholar]
- Stoka V., Nycander M., Lenarcic B., Labriola C., Cazzulo J. J., Björk I., Turk V. Inhibition of cruzipain, the major cysteine proteinase of the protozoan parasite, Trypanosoma cruzi, by proteinase inhibitors of the cystatin superfamily. FEBS Lett. 1995 Aug 14;370(1-2):101–104. doi: 10.1016/0014-5793(95)00798-e. [DOI] [PubMed] [Google Scholar]
- Tian W. X., Tsou C. L. Determination of the rate constant of enzyme modification by measuring the substrate reaction in the presence of the modifier. Biochemistry. 1982 Mar 2;21(5):1028–1032. doi: 10.1021/bi00534a031. [DOI] [PubMed] [Google Scholar]
- Walker B., Cullen B. M., Kay G., Halliday I. M., McGinty A., Nelson J. The synthesis, kinetic characterization and application of a novel biotinylated affinity label for cathepsin B. Biochem J. 1992 Apr 15;283(Pt 2):449–453. doi: 10.1042/bj2830449. [DOI] [PMC free article] [PubMed] [Google Scholar]