Abstract
A number of human diseases are caused by inherited mitochondrial DNA mutations. Two of these diseases, MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes) and MERRF (myoclonic epilepsy and ragged-red fibres), are commonly caused by point mutations to tRNA genes encoded by mitochondrial DNA. Here we report on how these mutations affect mitochondrial function in primary fibroblast cultures established from a MELAS patient containing an A to G mutation at nucleotide 3243 in the tRNA(Leu(UUR) gene and a MERRF patient containing an A to G mutation at nucleotide 8344 in the tRNA(Lys) gene. Both mitochondrial membrane potential and respiration rate were significantly decreased in digitonin-permeabilized MELAS and MERRF fibroblasts respiring on glutamate/malate. A similar decrease in mitochondrial membrane potential was found in intact MELAS and MERRF fibroblasts. The mitochondrial content of these cells, estimated by stereological analysis of electron micrographs and from measurement of mitochondrial marker enzymes, was similar in control, MELAS and MERRF cells. Therefore, in cultured fibroblasts, mutation of mitochondrial tRNA genes leads to assembly of bioenergetically incompetent mitochondria, not to an alteration in their amount. However, the cell volume occupied by secondary lysosomes and residual bodies in the MELAS and MERRF cells was greater than in control cells, suggesting increased mitochondrial degradation in these cells. In addition, fibroblasts containing mitochondrial DNA mutations were 3-4-fold larger than control fibroblasts. The implications of these findings for the pathology of mitochondrial diseases are discussed.
Full Text
The Full Text of this article is available as a PDF (289.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
- Brand M. D., Murphy M. P. Control of electron flux through the respiratory chain in mitochondria and cells. Biol Rev Camb Philos Soc. 1987 May;62(2):141–193. doi: 10.1111/j.1469-185x.1987.tb01265.x. [DOI] [PubMed] [Google Scholar]
- Brown G. C., Brand M. D. Thermodynamic control of electron flux through mitochondrial cytochrome bc1 complex. Biochem J. 1985 Jan 15;225(2):399–405. doi: 10.1042/bj2250399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomyn A., Martinuzzi A., Yoneda M., Daga A., Hurko O., Johns D., Lai S. T., Nonaka I., Angelini C., Attardi G. MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4221–4225. doi: 10.1073/pnas.89.10.4221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chrzanowska-Lightowlers Z. M., Turnbull D. M., Lightowlers R. N. A microtiter plate assay for cytochrome c oxidase in permeabilized whole cells. Anal Biochem. 1993 Oct;214(1):45–49. doi: 10.1006/abio.1993.1454. [DOI] [PubMed] [Google Scholar]
- Enriquez J. A., Chomyn A., Attardi G. MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA(Lys) and premature translation termination. Nat Genet. 1995 May;10(1):47–55. doi: 10.1038/ng0595-47. [DOI] [PubMed] [Google Scholar]
- Errede B., Haight G. P., Jr, Kamen M. D. Oxidation of ferrocytochrome c by mitochondrial cytochrome c oxidase. Proc Natl Acad Sci U S A. 1976 Jan;73(1):113–117. doi: 10.1073/pnas.73.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Estornell E., Fato R., Pallotti F., Lenaz G. Assay conditions for the mitochondrial NADH:coenzyme Q oxidoreductase. FEBS Lett. 1993 Oct 11;332(1-2):127–131. doi: 10.1016/0014-5793(93)80498-j. [DOI] [PubMed] [Google Scholar]
- Fang W., Huang C. C., Chu N. S., Lee C. C., Chen R. S., Pang C. Y., Shih K. D., Wei Y. H. Myoclonic epilepsy with ragged-red fibers (MERRF) syndrome: report of a Chinese family with mitochondrial DNA point mutation in tRNA(Lys) gene. Muscle Nerve. 1994 Jan;17(1):52–57. doi: 10.1002/mus.880170107. [DOI] [PubMed] [Google Scholar]
- Goto Y., Nonaka I., Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature. 1990 Dec 13;348(6302):651–653. doi: 10.1038/348651a0. [DOI] [PubMed] [Google Scholar]
- Gunter T. E., Gunter K. K., Sheu S. S., Gavin C. E. Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol. 1994 Aug;267(2 Pt 1):C313–C339. doi: 10.1152/ajpcell.1994.267.2.C313. [DOI] [PubMed] [Google Scholar]
- Gérard B., Bourgeron T., Chretien D., Rötig A., Munnich A., Rustin P. Uridine preserves the expression of respiratory enzyme deficiencies in cultured fibroblasts. Eur J Pediatr. 1993 Mar;152(3):270–270. doi: 10.1007/BF01956163. [DOI] [PubMed] [Google Scholar]
- Hatefi Y. Preparation and properties of dihydroubiquinone: cytochrome c oxidoreductase (complex III). Methods Enzymol. 1978;53:35–40. doi: 10.1016/s0076-6879(78)53010-3. [DOI] [PubMed] [Google Scholar]
- Hatefi Y., Stiggall D. L. Preparation and properties of succinate: ubiquinone oxidoreductase (complex II). Methods Enzymol. 1978;53:21–27. doi: 10.1016/s0076-6879(78)53008-5. [DOI] [PubMed] [Google Scholar]
- Huang C. C., Chen R. S., Chen C. M., Wang H. S., Lee C. C., Pang C. Y., Hsu H. S., Lee H. C., Wei Y. H. MELAS syndrome with mitochondrial tRNA(Leu(UUR)) gene mutation in a Chinese family. J Neurol Neurosurg Psychiatry. 1994 May;57(5):586–589. doi: 10.1136/jnnp.57.5.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King M. P., Attardi G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science. 1989 Oct 27;246(4929):500–503. doi: 10.1126/science.2814477. [DOI] [PubMed] [Google Scholar]
- King M. P., Koga Y., Davidson M., Schon E. A. Defects in mitochondrial protein synthesis and respiratory chain activity segregate with the tRNA(Leu(UUR)) mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Mol Cell Biol. 1992 Feb;12(2):480–490. doi: 10.1128/mcb.12.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kobayashi Y., Momoi M. Y., Tominaga K., Momoi T., Nihei K., Yanagisawa M., Kagawa Y., Ohta S. A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). Biochem Biophys Res Commun. 1990 Dec 31;173(3):816–822. doi: 10.1016/s0006-291x(05)80860-5. [DOI] [PubMed] [Google Scholar]
- Lestienne P., Bataillé N. Mitochondrial DNA alterations and genetic diseases: a review. Biomed Pharmacother. 1994;48(5-6):199–214. doi: 10.1016/0753-3322(94)90134-1. [DOI] [PubMed] [Google Scholar]
- Moudy A. M., Handran S. D., Goldberg M. P., Ruffin N., Karl I., Kranz-Eble P., DeVivo D. C., Rothman S. M. Abnormal calcium homeostasis and mitochondrial polarization in a human encephalomyopathy. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):729–733. doi: 10.1073/pnas.92.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nobes C. D., Brown G. C., Olive P. N., Brand M. D. Non-ohmic proton conductance of the mitochondrial inner membrane in hepatocytes. J Biol Chem. 1990 Aug 5;265(22):12903–12909. [PubMed] [Google Scholar]
- Reynafarje B., Costa L. E., Lehninger A. L. O2 solubility in aqueous media determined by a kinetic method. Anal Biochem. 1985 Mar;145(2):406–418. doi: 10.1016/0003-2697(85)90381-1. [DOI] [PubMed] [Google Scholar]
- Rugolo M., Lenaz G. Monitoring of the mitochondrial and plasma membrane potentials in human fibroblasts by tetraphenylphosphonium ion distribution. J Bioenerg Biomembr. 1987 Dec;19(6):705–718. doi: 10.1007/BF00762304. [DOI] [PubMed] [Google Scholar]
- Schon E. A., Koga Y., Davidson M., Moraes C. T., King M. P. The mitochondrial tRNA(Leu)(UUR)) mutation in MELAS: a model for pathogenesis. Biochim Biophys Acta. 1992 Jul 17;1101(2):206–209. [PubMed] [Google Scholar]
- Shih K. D., Yen T. C., Pang C. Y., Wei Y. H. Mitochondrial DNA mutation in a Chinese family with myoclonic epilepsy and ragged-red fiber disease. Biochem Biophys Res Commun. 1991 Feb 14;174(3):1109–1116. doi: 10.1016/0006-291x(91)91535-k. [DOI] [PubMed] [Google Scholar]
- Shoffner J. M., Lott M. T., Lezza A. M., Seibel P., Ballinger S. W., Wallace D. C. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell. 1990 Jun 15;61(6):931–937. doi: 10.1016/0092-8674(90)90059-n. [DOI] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Solmi R., Pallotti F., Rugolo M., Genova M. L., Estornell E., Ghetti P., Pugnaloni A., Biagini G., Rizzoli C., Lenaz G. Lack of major mitochondrial bioenergetic changes in cultured skin fibroblasts from aged individuals. Biochem Mol Biol Int. 1994 Jun;33(3):477–484. [PubMed] [Google Scholar]
- Sparaco M., Bonilla E., DiMauro S., Powers J. M. Neuropathology of mitochondrial encephalomyopathies due to mitochondrial DNA defects. J Neuropathol Exp Neurol. 1993 Jan;52(1):1–10. doi: 10.1097/00005072-199301000-00001. [DOI] [PubMed] [Google Scholar]
- Wallace D. C. 1994 William Allan Award Address. Mitochondrial DNA variation in human evolution, degenerative disease, and aging. Am J Hum Genet. 1995 Aug;57(2):201–223. [PMC free article] [PubMed] [Google Scholar]
- Wallace D. C. Mitochondrial DNA sequence variation in human evolution and disease. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8739–8746. doi: 10.1073/pnas.91.19.8739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace D. C. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science. 1992 May 1;256(5057):628–632. doi: 10.1126/science.1533953. [DOI] [PubMed] [Google Scholar]