Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Sep 1;318(Pt 2):417–424. doi: 10.1042/bj3180417

Isothiazolones interfere with normal matrix metalloproteinase activation and inhibit cartilage proteoglycan degradation.

E C Arner 1, M A Pratta 1, B Freimark 1, M Lischwe 1, J M Trzaskos 1, R L Magolda 1, S W Wright 1
PMCID: PMC1217638  PMID: 8809028

Abstract

A series of isothiazolones that inhibit pro-(matrix metallo-proteinase) (proMMP) activation but do not inhibit the active enzyme are effective as cartilage protectants in bovine nasal cartilage organ culture, preventing interleukin-1 (IL-1)-induced proteoglycan (aggrecan) degradation without affecting its synthesis. These compounds were found to bind to prostromelysin (proMMP-3) in a non-dialysable and stoichiometric manner. Preincubation with cartilage-protectant isothiazolones prevented the binding of [14C]iodoacetamide to Cys75 of the MMP-3 propeptide, suggesting that the activity of these compounds involves their binding to the Cys75 of the MMP zymogen. Studies following chymotrypsin activation of proMMP-3 by SDS/PAGE indicated that altered processing of the 57 kDa zymogen to the active form occurred in the presence of compound. The 53 kDa intermediate seen on normal activation was not formed; instead a different intermediate appeared with a molecular mass of approx. 46 kDa. N-terminal sequence analysis indicated that this intermediate was formed by cleavage at the putative 4-aminophenylmercuric acid cleavage site. Importantly the 45 kDa active MMP-3 species formed in the presence of compound was one amino acid residue shorter than the native MMP-3. These results suggest that the inhibition of cartilage proteoglycan degradation by isothiazolones might be due to their ability to bind to the Cys75 in the propeptide region of the MMP zymogen and interfere with its normal activation process.

Full Text

The Full Text of this article is available as a PDF (502.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arner E. C., Di Meo T. M., Ruhl D. M., Pratta M. A. In vivo studies on the effects of human recombinant interleukin-1 beta on articular cartilage. Agents Actions. 1989 Jun;27(3-4):254–257. doi: 10.1007/BF01972789. [DOI] [PubMed] [Google Scholar]
  2. Arner E. C., Pratta M. A. Independent effects of interleukin-1 on proteoglycan breakdown, proteoglycan synthesis, and prostaglandin E2 release from cartilage in organ culture. Arthritis Rheum. 1989 Mar;32(3):288–297. doi: 10.1002/anr.1780320310. [DOI] [PubMed] [Google Scholar]
  3. Arner E. C., Pratta M. A. Modulation of interleukin-1-induced alterations in cartilage proteoglycan metabolism by activation of protein kinase C. Arthritis Rheum. 1991 Aug;34(8):1006–1013. doi: 10.1002/art.1780340810. [DOI] [PubMed] [Google Scholar]
  4. Birkedal-Hansen H. Catabolism and turnover of collagens: collagenases. Methods Enzymol. 1987;144:140–171. doi: 10.1016/0076-6879(87)44177-3. [DOI] [PubMed] [Google Scholar]
  5. Buttle D. J., Handley C. J., Ilic M. Z., Saklatvala J., Murata M., Barrett A. J. Inhibition of cartilage proteoglycan release by a specific inactivator of cathepsin B and an inhibitor of matrix metalloproteinases. Evidence for two converging pathways of chondrocyte-mediated proteoglycan degradation. Arthritis Rheum. 1993 Dec;36(12):1709–1717. doi: 10.1002/art.1780361210. [DOI] [PubMed] [Google Scholar]
  6. Caputo C. B., Sygowski L. A., Wolanin D. J., Patton S. P., Caccese R. G., Shaw A., Roberts R. A., DiPasquale G. Effect of synthetic metalloprotease inhibitors on cartilage autolysis in vitro. J Pharmacol Exp Ther. 1987 Feb;240(2):460–465. [PubMed] [Google Scholar]
  7. Chen L. C., Noelken M. E., Nagase H. Disruption of the cysteine-75 and zinc ion coordination is not sufficient to activate the precursor of human matrix metalloproteinase 3 (stromelysin 1). Biochemistry. 1993 Oct 5;32(39):10289–10295. doi: 10.1021/bi00090a003. [DOI] [PubMed] [Google Scholar]
  8. Chin J. R., Murphy G., Werb Z. Stromelysin, a connective tissue-degrading metalloendopeptidase secreted by stimulated rabbit synovial fibroblasts in parallel with collagenase. Biosynthesis, isolation, characterization, and substrates. J Biol Chem. 1985 Oct 5;260(22):12367–12376. [PubMed] [Google Scholar]
  9. Farndale R. W., Sayers C. A., Barrett A. J. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect Tissue Res. 1982;9(4):247–248. doi: 10.3109/03008208209160269. [DOI] [PubMed] [Google Scholar]
  10. Fosang A. J., Neame P. J., Last K., Hardingham T. E., Murphy G., Hamilton J. A. The interglobular domain of cartilage aggrecan is cleaved by PUMP, gelatinases, and cathepsin B. J Biol Chem. 1992 Sep 25;267(27):19470–19474. [PubMed] [Google Scholar]
  11. Gowen M., Wood D. D., Ihrie E. J., Meats J. E., Russell R. G. Stimulation by human interleukin 1 of cartilage breakdown and production of collagenase and proteoglycanase by human chondrocytes but not by human osteoblasts in vitro. Biochim Biophys Acta. 1984 Feb 14;797(2):186–193. doi: 10.1016/0304-4165(84)90121-1. [DOI] [PubMed] [Google Scholar]
  12. Gunja-Smith Z., Nagase H., Woessner J. F., Jr Purification of the neutral proteoglycan-degrading metalloproteinase from human articular cartilage tissue and its identification as stromelysin matrix metalloproteinase-3. Biochem J. 1989 Feb 15;258(1):115–119. doi: 10.1042/bj2580115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harvey A. K., Stack S. T., Chandrasekhar S. Differential modulation of degradative and repair responses of interleukin-1-treated chondrocytes by platelet-derived growth factor. Biochem J. 1993 May 15;292(Pt 1):129–136. doi: 10.1042/bj2920129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Huang J. J., Newton R. C., Pezzella K., Covington M., Tamblyn T., Rutlege S. J., Gray J., Kelley M., Lin Y. High-level expression in Escherichia coli of a soluble and fully active recombinant interleukin-1 beta. Mol Biol Med. 1987 Jun;4(3):169–181. [PubMed] [Google Scholar]
  15. Inerot S., Heinegård D., Audell L., Olsson S. E. Articular-cartilage proteoglycans in aging and osteoarthritis. Biochem J. 1978 Jan 1;169(1):143–156. doi: 10.1042/bj1690143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lohmander L. S., Hoerrner L. A., Lark M. W. Metalloproteinases, tissue inhibitor, and proteoglycan fragments in knee synovial fluid in human osteoarthritis. Arthritis Rheum. 1993 Feb;36(2):181–189. doi: 10.1002/art.1780360207. [DOI] [PubMed] [Google Scholar]
  17. Mankin H. J., Lippiello L. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. J Bone Joint Surg Am. 1970 Apr;52(3):424–434. [PubMed] [Google Scholar]
  18. Martel-Pelletier J., Pelletier J. P., Cloutier J. M., Howell D. S., Ghandur-Mnaymneh L., Woessner J. F., Jr Neutral proteases capable of proteoglycan digesting activity in osteoarthritic and normal human articular cartilage. Arthritis Rheum. 1984 Mar;27(3):305–312. doi: 10.1002/art.1780270310. [DOI] [PubMed] [Google Scholar]
  19. McDonnell J., Hoerrner L. A., Lark M. W., Harper C., Dey T., Lobner J., Eiermann G., Kazazis D., Singer I. I., Moore V. L. Recombinant human interleukin-1 beta-induced increase in levels of proteoglycans, stromelysin, and leukocytes in rabbit synovial fluid. Arthritis Rheum. 1992 Jul;35(7):799–805. doi: 10.1002/art.1780350714. [DOI] [PubMed] [Google Scholar]
  20. Nagase H., Enghild J. J., Suzuki K., Salvesen G. Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and (4-aminophenyl)mercuric acetate. Biochemistry. 1990 Jun 19;29(24):5783–5789. doi: 10.1021/bi00476a020. [DOI] [PubMed] [Google Scholar]
  21. O'Byrne E. M., Blancuzzi V., Wilson D. E., Wong M., Jeng A. Y. Elevated substance P and accelerated cartilage degradation in rabbit knees injected with interleukin-1 and tumor necrosis factor. Arthritis Rheum. 1990 Jul;33(7):1023–1028. doi: 10.1002/art.1780330715. [DOI] [PubMed] [Google Scholar]
  22. Ogata Y., Enghild J. J., Nagase H. Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J Biol Chem. 1992 Feb 25;267(6):3581–3584. [PubMed] [Google Scholar]
  23. Okada Y., Harris E. D., Jr, Nagase H. The precursor of a metalloendopeptidase from human rheumatoid synovial fibroblasts. Purification and mechanisms of activation by endopeptidases and 4-aminophenylmercuric acetate. Biochem J. 1988 Sep 15;254(3):731–741. doi: 10.1042/bj2540731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Okada Y., Harris E. D., Jr, Nagase H. The precursor of a metalloendopeptidase from human rheumatoid synovial fibroblasts. Purification and mechanisms of activation by endopeptidases and 4-aminophenylmercuric acetate. Biochem J. 1988 Sep 15;254(3):731–741. doi: 10.1042/bj2540731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Okada Y., Nagase H., Harris E. D., Jr A metalloproteinase from human rheumatoid synovial fibroblasts that digests connective tissue matrix components. Purification and characterization. J Biol Chem. 1986 Oct 25;261(30):14245–14255. [PubMed] [Google Scholar]
  26. Okada Y., Shinmei M., Tanaka O., Naka K., Kimura A., Nakanishi I., Bayliss M. T., Iwata K., Nagase H. Localization of matrix metalloproteinase 3 (stromelysin) in osteoarthritic cartilage and synovium. Lab Invest. 1992 Jun;66(6):680–690. [PubMed] [Google Scholar]
  27. Okada Y., Takeuchi N., Tomita K., Nakanishi I., Nagase H. Immunolocalization of matrix metalloproteinase 3 (stromelysin) in rheumatoid synovioblasts (B cells): correlation with rheumatoid arthritis. Ann Rheum Dis. 1989 Aug;48(8):645–653. doi: 10.1136/ard.48.8.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Palmoski M., Brandt K. Hyaluronate-binding by proteoglycans. Comparison of mildly and severely osteoarthritic regions of human femoral cartilage. Clin Chim Acta. 1976 Jul 1;70(1):87–95. doi: 10.1016/0009-8981(76)90008-5. [DOI] [PubMed] [Google Scholar]
  29. Pelletier J. P., Martel-Pelletier J., Altman R. D., Ghandur-Mnaymneh L., Howell D. S., Woessner J. F., Jr Collagenolytic activity and collagen matrix breakdown of the articular cartilage in the Pond-Nuki dog model of osteoarthritis. Arthritis Rheum. 1983 Jul;26(7):866–874. doi: 10.1002/art.1780260708. [DOI] [PubMed] [Google Scholar]
  30. Pelletier J. P., Martel-Pelletier J., Cloutier J. M., Woessner J. F., Jr Proteoglycan-degrading acid metalloprotease activity in human osteoarthritic cartilage, and the effect of intraarticular steroid injections. Arthritis Rheum. 1987 May;30(5):541–548. doi: 10.1002/art.1780300508. [DOI] [PubMed] [Google Scholar]
  31. Pelletier J. P., Martel-Pelletier J., Howell D. S., Ghandur-Mnaymneh L., Enis J. E., Woessner J. F., Jr Collagenase and collagenolytic activity in human osteoarthritic cartilage. Arthritis Rheum. 1983 Jan;26(1):63–68. doi: 10.1002/art.1780260110. [DOI] [PubMed] [Google Scholar]
  32. Pettipher E. R., Henderson B., Hardingham T., Ratcliffe A. Cartilage proteoglycan depletion in acute and chronic antigen-induced arthritis. Arthritis Rheum. 1989 May;32(5):601–607. doi: 10.1002/anr.1780320514. [DOI] [PubMed] [Google Scholar]
  33. Pettipher E. R., Higgs G. A., Henderson B. Interleukin 1 induces leukocyte infiltration and cartilage proteoglycan degradation in the synovial joint. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8749–8753. doi: 10.1073/pnas.83.22.8749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rainsford K. D. Effects of anti-inflammatory drugs on catabolin-induced cartilage destruction in vitro. Int J Tissue React. 1985;7(2):123–126. [PubMed] [Google Scholar]
  35. Richardson H. J., Elford P. R., Sharrard R. M., Meats J. E., Russell R. G. Modulation of connective tissue metabolism by partially purified human interleukin 1. Cell Immunol. 1985 Jan;90(1):41–51. doi: 10.1016/0008-8749(85)90167-4. [DOI] [PubMed] [Google Scholar]
  36. Saklatvala J., Sarsfield S. J., Pilsworth L. M. Characterization of proteins from human synovium and mononuclear leucocytes that induce resorption of cartilage proteoglycan in vitro. Biochem J. 1983 Feb 1;209(2):337–344. doi: 10.1042/bj2090337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sandy J. D., Boynton R. E., Flannery C. R. Analysis of the catabolism of aggrecan in cartilage explants by quantitation of peptides from the three globular domains. J Biol Chem. 1991 May 5;266(13):8198–8205. [PubMed] [Google Scholar]
  38. Schwartz M. A., Van Wart H. E. Synthetic inhibitors of bacterial and mammalian interstitial collagenases. Prog Med Chem. 1992;29:271–334. doi: 10.1016/s0079-6468(08)70011-0. [DOI] [PubMed] [Google Scholar]
  39. Sheppeard H., Pilsworth L. M., Hazleman B., Dingle J. T. Effects of antirheumatoid drugs on the production and action of porcine catabolin. Ann Rheum Dis. 1982 Oct;41(5):463–468. doi: 10.1136/ard.41.5.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Steinberg J., Sledge C. B., Noble J., Stirrat C. R. A tissue-culture model of cartilage breakdown in rheumatoid arthritis. Quantitative aspects of proteoglycan release. Biochem J. 1979 May 15;180(2):403–412. doi: 10.1042/bj1800403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tyler J. A. Articular cartilage cultured with catabolin (pig interleukin 1) synthesizes a decreased number of normal proteoglycan molecules. Biochem J. 1985 May 1;227(3):869–878. doi: 10.1042/bj2270869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tyler J. A. Chondrocyte-mediated depletion of articular cartilage proteoglycans in vitro. Biochem J. 1985 Jan 15;225(2):493–507. doi: 10.1042/bj2250493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Van Wart H. E., Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5578–5582. doi: 10.1073/pnas.87.14.5578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Walakovits L. A., Moore V. L., Bhardwaj N., Gallick G. S., Lark M. W. Detection of stromelysin and collagenase in synovial fluid from patients with rheumatoid arthritis and posttraumatic knee injury. Arthritis Rheum. 1992 Jan;35(1):35–42. doi: 10.1002/art.1780350106. [DOI] [PubMed] [Google Scholar]
  45. Woessner J. F., Jr Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991 May;5(8):2145–2154. [PubMed] [Google Scholar]
  46. Woessner J. F., Jr, Selzer M. G. Two latent metalloproteases of human articular cartilage that digest proteoglycan. J Biol Chem. 1984 Mar 25;259(6):3633–3638. [PubMed] [Google Scholar]
  47. Wright S. W., Petraitis J. J., Abelman M. M., Batt D. G., Bostrom L. L., Corbett R. L., Decicco C. P., Di Meo S. V., Freimark B., Giannaras J. V. Heteroaryl-fused 2-phenylisothiazolone inhibitors of cartilage breakdown. J Med Chem. 1994 Sep 16;37(19):3071–3078. doi: 10.1021/jm00045a012. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES