Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Sep 1;318(Pt 2):443–449. doi: 10.1042/bj3180443

Location of essential sequence elements at the Escherichia coli melAB promoter.

J Keen 1, J Williams 1, S Busby 1
PMCID: PMC1217641  PMID: 8809031

Abstract

The Escherichia coli melAB promoter has been cloned on a short DNA fragment and subjected to deletion mutagenesis, random mutagenesis and site-directed mutagenesis. In previous work we had shown that expression from the melAB promoter is triggered by melibiose and that this requires the MelR transcription activator. Melibiose-dependent expression is suppressed by deletions that remove both DNA-binding sites for MelR and by point mutations in the -10 hexamer, the -35 hexamer and the region just upstream of the -35 hexamer. The point mutations identify promoter elements that are essential for triggering the melAB promoter. The importance of these elements was confirmed by site-directed mutagenesis. The results show that the organization of the melAB promoter is fundamentally different from the organization of other bacterial promoters controlled by homologues of MelR.

Full Text

The Full Text of this article is available as a PDF (509.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bingham A. H., Busby S. J. Translation of galE and coordination of galactose operon expression in Escherichia coli: effects of insertions and deletions in the non-translated leader sequence. Mol Microbiol. 1987 Jul;1(1):117–124. doi: 10.1111/j.1365-2958.1987.tb00535.x. [DOI] [PubMed] [Google Scholar]
  2. Busby S., Ebright R. H. Promoter structure, promoter recognition, and transcription activation in prokaryotes. Cell. 1994 Dec 2;79(5):743–746. doi: 10.1016/0092-8674(94)90063-9. [DOI] [PubMed] [Google Scholar]
  3. Casadaban M. J., Cohen S. N. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol. 1980 Apr;138(2):179–207. doi: 10.1016/0022-2836(80)90283-1. [DOI] [PubMed] [Google Scholar]
  4. Caswell R., Webster C., Busby S. Studies on the binding of the Escherichia coli MelR transcription activator protein to operator sequences at the MelAB promoter. Biochem J. 1992 Oct 15;287(Pt 2):501–508. doi: 10.1042/bj2870501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caswell R., Williams J., Lyddiatt A., Busby S. Overexpression, purification and characterization of the Escherichia coli MelR transcription activator protein. Biochem J. 1992 Oct 15;287(Pt 2):493–499. doi: 10.1042/bj2870493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Egan S. M., Schleif R. F. DNA-dependent renaturation of an insoluble DNA binding protein. Identification of the RhaS binding site at rhaBAD. J Mol Biol. 1994 Nov 11;243(5):821–829. doi: 10.1006/jmbi.1994.1684. [DOI] [PubMed] [Google Scholar]
  7. Gallegos M. T., Michán C., Ramos J. L. The XylS/AraC family of regulators. Nucleic Acids Res. 1993 Feb 25;21(4):807–810. doi: 10.1093/nar/21.4.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hendrickson W., Stoner C., Schleif R. Characterization of the Escherichia coli araFGH and araJ promoters. J Mol Biol. 1990 Oct 20;215(4):497–510. doi: 10.1016/S0022-2836(05)80163-9. [DOI] [PubMed] [Google Scholar]
  9. Ishihama A. Protein-protein communication within the transcription apparatus. J Bacteriol. 1993 May;175(9):2483–2489. doi: 10.1128/jb.175.9.2483-2489.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kessler B., de Lorenzo V., Timmis K. N. Identification of a cis-acting sequence within the Pm promoter of the TOL plasmid which confers XylS-mediated responsiveness to substituted benzoates. J Mol Biol. 1993 Apr 5;230(3):699–703. doi: 10.1006/jmbi.1993.1189. [DOI] [PubMed] [Google Scholar]
  11. Kobayashi M., Nagata K., Ishihama A. Promoter selectivity of Escherichia coli RNA polymerase: effect of base substitutions in the promoter -35 region on promoter strength. Nucleic Acids Res. 1990 Dec 25;18(24):7367–7372. doi: 10.1093/nar/18.24.7367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lodge J., Williams R., Bell A., Chan B., Busby S. Comparison of promoter activities in Escherichia coli and Pseudomonas aeruginosa: use of a new broad-host-range promoter-probe plasmid. FEMS Microbiol Lett. 1990 Jan 15;55(1-2):221–225. doi: 10.1016/0378-1097(90)90199-z. [DOI] [PubMed] [Google Scholar]
  13. McClure W. R. Mechanism and control of transcription initiation in prokaryotes. Annu Rev Biochem. 1985;54:171–204. doi: 10.1146/annurev.bi.54.070185.001131. [DOI] [PubMed] [Google Scholar]
  14. Moralejo P., Egan S. M., Hidalgo E., Aguilar J. Sequencing and characterization of a gene cluster encoding the enzymes for L-rhamnose metabolism in Escherichia coli. J Bacteriol. 1993 Sep;175(17):5585–5594. doi: 10.1128/jb.175.17.5585-5594.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moyle H., Waldburger C., Susskind M. M. Hierarchies of base pair preferences in the P22 ant promoter. J Bacteriol. 1991 Mar;173(6):1944–1950. doi: 10.1128/jb.173.6.1944-1950.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Raibaud O., Schwartz M. Positive control of transcription initiation in bacteria. Annu Rev Genet. 1984;18:173–206. doi: 10.1146/annurev.ge.18.120184.001133. [DOI] [PubMed] [Google Scholar]
  17. Reeder T., Schleif R. AraC protein can activate transcription from only one position and when pointed in only one direction. J Mol Biol. 1993 May 20;231(2):205–218. doi: 10.1006/jmbi.1993.1276. [DOI] [PubMed] [Google Scholar]
  18. Schmitt R. Analysis of melibiose mutants deficient in alpha-galactosidase and thiomethylgalactoside permease II in Escherichia coli K-12. J Bacteriol. 1968 Aug;96(2):462–471. doi: 10.1128/jb.96.2.462-471.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Thomas M. S., Glass R. E. Escherichia coli rpoA mutation which impairs transcription of positively regulated systems. Mol Microbiol. 1991 Nov;5(11):2719–2725. doi: 10.1111/j.1365-2958.1991.tb01980.x. [DOI] [PubMed] [Google Scholar]
  20. Tobin J. F., Schleif R. F. Purification and properties of RhaR, the positive regulator of the L-rhamnose operons of Escherichia coli. J Mol Biol. 1990 Jan 5;211(1):75–89. doi: 10.1016/0022-2836(90)90012-B. [DOI] [PubMed] [Google Scholar]
  21. Webster C., Gardner L., Busby S. The Escherichia coli melR gene encodes a DNA-binding protein with affinity for specific sequences located in the melibiose-operon regulatory region. Gene. 1989 Nov 30;83(2):207–213. doi: 10.1016/0378-1119(89)90106-6. [DOI] [PubMed] [Google Scholar]
  22. Webster C., Gaston K., Busby S. Transcription from the Escherichia coli melR promoter is dependent on the cyclic AMP receptor protein. Gene. 1988 Sep 7;68(2):297–305. doi: 10.1016/0378-1119(88)90032-7. [DOI] [PubMed] [Google Scholar]
  23. Webster C., Kempsell K., Booth I., Busby S. Organisation of the regulatory region of the Escherichia coli melibiose operon. Gene. 1987;59(2-3):253–263. doi: 10.1016/0378-1119(87)90333-7. [DOI] [PubMed] [Google Scholar]
  24. Williams J., Michan C., Webster C., Busby S. Interactions between the Escherichia coli MelR transcription activator protein and operator sequences at the melAB promoter. Biochem J. 1994 Jun 15;300(Pt 3):757–763. doi: 10.1042/bj3000757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zhou Y., Zhang X., Ebright R. H. Identification of the activating region of catabolite gene activator protein (CAP): isolation and characterization of mutants of CAP specifically defective in transcription activation. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6081–6085. doi: 10.1073/pnas.90.13.6081. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES