Abstract
The effect of phorbol ester-induced down-regulation of protein kinase C (PKC) on diacylglycerol (sn-1,2-dioctanoylglycerol, diC8)- and G-protein-coupled Ca2+ sensitization and on the relationship between phosphorylation of the regulatory myosin light chains (MLC20) and force during Ca2+ sensitization were investigated in rabbit portal vein (PV), femoral artery (FA) and ileum smooth muscle. The effects of phorbol dibutyrate (PDBu), guanosine 5'-[gamma-thio]triphosphate (GTP[S]) and agonists on the membrane versus cytosolic distribution of PKC isoenzymes were also determined. Down-regulation of PKC abolished Ca2+ sensitization of force and the accompanying increases in MLC20 phosphorylation induced by PDBu, as well as Ca2+ sensitization of force by diC8, but not that by GTP[S], aluminum fluoride (AIF4-) or agonists (phenylephrine, endothelin or carbachol). Down-regulation also inhibited the PDBu-, but not the GTP[S]-induced increase in force under Ca(2+)-free conditions. In ileum, PDBu translocated PKCs alpha, beta 1, beta 2, epsilon and theta to the membrane fraction, and GTP[S] caused a small translocation of PKC-epsilon. Carbachol- and GTP[S]-induced Ca2+ sensitization remained unaffected in down-regulated ileum in which no cytosolic PKC-epsilon was detectable. We conclude that, although both phorbol ester-induced and G-protein-coupled Ca2+ sensitization of force are mediated by increased MLC20 phosphorylation, it is likely that PKCs alpha, beta 1, beta 2, epsilon and theta do not play an essential role in, although they may contribute to, the G-protein-coupled mechanism.
Full Text
The Full Text of this article is available as a PDF (518.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alessi D., MacDougall L. K., Sola M. M., Ikebe M., Cohen P. The control of protein phosphatase-1 by targetting subunits. The major myosin phosphatase in avian smooth muscle is a novel form of protein phosphatase-1. Eur J Biochem. 1992 Dec 15;210(3):1023–1035. doi: 10.1111/j.1432-1033.1992.tb17508.x. [DOI] [PubMed] [Google Scholar]
- Brozovich F. V. PKC regulates agonist-induced force enhancement in single alpha-toxin-permeabilized vascular smooth muscle cells. Am J Physiol. 1995 May;268(5 Pt 1):C1202–C1206. doi: 10.1152/ajpcell.1995.268.5.C1202. [DOI] [PubMed] [Google Scholar]
- Chatterjee M., Tejada M. Phorbol ester-induced contraction in chemically skinned vascular smooth muscle. Am J Physiol. 1986 Sep;251(3 Pt 1):C356–C361. doi: 10.1152/ajpcell.1986.251.3.C356. [DOI] [PubMed] [Google Scholar]
- Collins E. M., Walsh M. P., Morgan K. G. Contraction of single vascular smooth muscle cells by phenylephrine at constant [Ca2+]i. Am J Physiol. 1992 Mar;262(3 Pt 2):H754–H762. doi: 10.1152/ajpheart.1992.262.3.H754. [DOI] [PubMed] [Google Scholar]
- Fujita A., Takeuchi T., Nakajima H., Nishio H., Hata F. Involvement of heterotrimeric GTP-binding protein and rho protein, but not protein kinase C, in agonist-induced Ca2+ sensitization of skinned muscle of guinea pig vas deferens. J Pharmacol Exp Ther. 1995 Jul;274(1):555–561. [PubMed] [Google Scholar]
- Gong M. C., Fuglsang A., Alessi D., Kobayashi S., Cohen P., Somlyo A. V., Somlyo A. P. Arachidonic acid inhibits myosin light chain phosphatase and sensitizes smooth muscle to calcium. J Biol Chem. 1992 Oct 25;267(30):21492–21498. [PubMed] [Google Scholar]
- Gong M. C., Iizuka K., Nixon G., Browne J. P., Hall A., Eccleston J. F., Sugai M., Kobayashi S., Somlyo A. V., Somlyo A. P. Role of guanine nucleotide-binding proteins--ras-family or trimeric proteins or both--in Ca2+ sensitization of smooth muscle. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1340–1345. doi: 10.1073/pnas.93.3.1340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haller H., Smallwood J. I., Rasmussen H. Protein kinase C translocation in intact vascular smooth muscle strips. Biochem J. 1990 Sep 1;270(2):375–381. doi: 10.1042/bj2700375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hori M., Sato K., Miyamoto S., Ozaki H., Karaki H. Different pathways of calcium sensitization activated by receptor agonists and phorbol esters in vascular smooth muscle. Br J Pharmacol. 1993 Dec;110(4):1527–1531. doi: 10.1111/j.1476-5381.1993.tb13996.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horiuti K. Mechanism of contracture on cooling of caffeine-treated frog skeletal muscle fibres. J Physiol. 1988 Apr;398:131–148. doi: 10.1113/jphysiol.1988.sp017034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikebe M., Hartshorne D. J., Elzinga M. Phosphorylation of the 20,000-dalton light chain of smooth muscle myosin by the calcium-activated, phospholipid-dependent protein kinase. Phosphorylation sites and effects of phosphorylation. J Biol Chem. 1987 Jul 15;262(20):9569–9573. [PubMed] [Google Scholar]
- Itoh T., Suzuki A., Watanabe Y. Effect of a peptide inhibitor of protein kinase C on G-protein-mediated increase in myofilament Ca(2+)-sensitivity in rabbit arterial skinned muscle. Br J Pharmacol. 1994 Jan;111(1):311–317. doi: 10.1111/j.1476-5381.1994.tb14061.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kahn R. A. Fluoride is not an activator of the smaller (20-25 kDa) GTP-binding proteins. J Biol Chem. 1991 Aug 25;266(24):15595–15597. [PubMed] [Google Scholar]
- Khalil R. A., Lajoie C., Resnick M. S., Morgan K. G. Ca(2+)-independent isoforms of protein kinase C differentially translocate in smooth muscle. Am J Physiol. 1992 Sep;263(3 Pt 1):C714–C719. doi: 10.1152/ajpcell.1992.263.3.C714. [DOI] [PubMed] [Google Scholar]
- Khalil R. A., Morgan K. G. PKC-mediated redistribution of mitogen-activated protein kinase during smooth muscle cell activation. Am J Physiol. 1993 Aug;265(2 Pt 1):C406–C411. doi: 10.1152/ajpcell.1993.265.2.C406. [DOI] [PubMed] [Google Scholar]
- Khalil R. A., Morgan K. G. Phenylephrine-induced translocation of protein kinase C and shortening of two types of vascular cells of the ferret. J Physiol. 1992 Sep;455:585–599. doi: 10.1113/jphysiol.1992.sp019317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitazawa T., Gaylinn B. D., Denney G. H., Somlyo A. P. G-protein-mediated Ca2+ sensitization of smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem. 1991 Jan 25;266(3):1708–1715. [PubMed] [Google Scholar]
- Kitazawa T., Kobayashi S., Horiuti K., Somlyo A. V., Somlyo A. P. Receptor-coupled, permeabilized smooth muscle. Role of the phosphatidylinositol cascade, G-proteins, and modulation of the contractile response to Ca2+. J Biol Chem. 1989 Apr 5;264(10):5339–5342. [PubMed] [Google Scholar]
- Kitazawa T., Masuo M., Somlyo A. P. G protein-mediated inhibition of myosin light-chain phosphatase in vascular smooth muscle. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9307–9310. doi: 10.1073/pnas.88.20.9307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitazawa T., Somlyo A. P. Modulation of Ca2+ sensitivity by agonists in smooth muscle. Adv Exp Med Biol. 1991;304:97–109. doi: 10.1007/978-1-4684-6003-2_10. [DOI] [PubMed] [Google Scholar]
- Kobayashi S., Gong M. C., Somlyo A. V., Somlyo A. P. Ca2+ channel blockers distinguish between G protein-coupled pharmacomechanical Ca2+ release and Ca2+ sensitization. Am J Physiol. 1991 Feb;260(2 Pt 1):C364–C370. doi: 10.1152/ajpcell.1991.260.2.C364. [DOI] [PubMed] [Google Scholar]
- Kobayashi S., Kitazawa T., Somlyo A. V., Somlyo A. P. Cytosolic heparin inhibits muscarinic and alpha-adrenergic Ca2+ release in smooth muscle. Physiological role of inositol 1,4,5-trisphosphate in pharmacomechanical coupling. J Biol Chem. 1989 Oct 25;264(30):17997–18004. [PubMed] [Google Scholar]
- Lee M. W., Severson D. L. Signal transduction in vascular smooth muscle: diacylglycerol second messengers and PKC action. Am J Physiol. 1994 Sep;267(3 Pt 1):C659–C678. doi: 10.1152/ajpcell.1994.267.3.C659. [DOI] [PubMed] [Google Scholar]
- Lee T. S., Chao T., Hu K. Q., King G. L. Endothelin stimulates a sustained 1,2-diacylglycerol increase and protein kinase C activation in bovine aortic smooth muscle cells. Biochem Biophys Res Commun. 1989 Jul 14;162(1):381–386. doi: 10.1016/0006-291x(89)92008-1. [DOI] [PubMed] [Google Scholar]
- Masuo M., Reardon S., Ikebe M., Kitazawa T. A novel mechanism for the Ca(2+)-sensitizing effect of protein kinase C on vascular smooth muscle: inhibition of myosin light chain phosphatase. J Gen Physiol. 1994 Aug;104(2):265–286. doi: 10.1085/jgp.104.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishikawa M., Sellers J. R., Adelstein R. S., Hidaka H. Protein kinase C modulates in vitro phosphorylation of the smooth muscle heavy meromyosin by myosin light chain kinase. J Biol Chem. 1984 Jul 25;259(14):8808–8814. [PubMed] [Google Scholar]
- Nishimura J., Kolber M., van Breemen C. Norepinephrine and GTP-gamma-S increase myofilament Ca2+ sensitivity in alpha-toxin permeabilized arterial smooth muscle. Biochem Biophys Res Commun. 1988 Dec 15;157(2):677–683. doi: 10.1016/s0006-291x(88)80303-6. [DOI] [PubMed] [Google Scholar]
- Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 1995 Apr;9(7):484–496. [PubMed] [Google Scholar]
- Parker P. J., Bosca L., Dekker L., Goode N. T., Hajibagheri N., Hansra G. Protein kinase C (PKC)-induced PKC degradation: a model for down-regulation. Biochem Soc Trans. 1995 Feb;23(1):153–155. doi: 10.1042/bst0230153. [DOI] [PubMed] [Google Scholar]
- Rapoport R. M., Campbell A. K., Bazan E. Effects of PKC downregulation on norepinephrine- and prostaglandin F2 alpha-induced contraction in rat aorta. Am J Physiol. 1995 Aug;269(2 Pt 2):H590–H598. doi: 10.1152/ajpheart.1995.269.2.H590. [DOI] [PubMed] [Google Scholar]
- Sando J. J., Maurer M. C., Bolen E. J., Grisham C. M. Role of cofactors in protein kinase C activation. Cell Signal. 1992 Nov;4(6):595–609. doi: 10.1016/0898-6568(92)90041-6. [DOI] [PubMed] [Google Scholar]
- Singer H. A. Phorbol ester-induced stress and myosin light chain phosphorylation in swine carotid medial smooth muscle. J Pharmacol Exp Ther. 1990 Mar;252(3):1068–1074. [PubMed] [Google Scholar]
- Singer H. A. Protein kinase C activation and myosin light chain phosphorylation in 32P-labeled arterial smooth muscle. Am J Physiol. 1990 Oct;259(4 Pt 1):C631–C639. doi: 10.1152/ajpcell.1990.259.4.C631. [DOI] [PubMed] [Google Scholar]
- Singer H. A., Schworer C. M., Sweeley C., Benscoter H. Activation of protein kinase C isozymes by contractile stimuli in arterial smooth muscle. Arch Biochem Biophys. 1992 Dec;299(2):320–329. doi: 10.1016/0003-9861(92)90281-z. [DOI] [PubMed] [Google Scholar]
- Somlyo A. P., Somlyo A. V. Signal transduction and regulation in smooth muscle. Nature. 1994 Nov 17;372(6503):231–236. doi: 10.1038/372231a0. [DOI] [PubMed] [Google Scholar]
- Sutton T. A., Haeberle J. R. Phosphorylation by protein kinase C of the 20,000-dalton light chain of myosin in intact and chemically skinned vascular smooth muscle. J Biol Chem. 1990 Feb 15;265(5):2749–2754. [PubMed] [Google Scholar]
- Takuwa Y., Kelley G., Takuwa N., Rasmussen H. Protein phosphorylation changes in bovine carotid artery smooth muscle during contraction and relaxation. Mol Cell Endocrinol. 1988 Nov;60(1):71–86. doi: 10.1016/0303-7207(88)90121-9. [DOI] [PubMed] [Google Scholar]
- Tamaoki T. Use and specificity of staurosporine, UCN-01, and calphostin C as protein kinase inhibitors. Methods Enzymol. 1991;201:340–347. doi: 10.1016/0076-6879(91)01030-6. [DOI] [PubMed] [Google Scholar]
- Walsh M. P., Andrea J. E., Allen B. G., Clément-Chomienne O., Collins E. M., Morgan K. G. Smooth muscle protein kinase C. Can J Physiol Pharmacol. 1994 Nov;72(11):1392–1399. doi: 10.1139/y94-201. [DOI] [PubMed] [Google Scholar]