Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Sep 1;318(Pt 2):533–538. doi: 10.1042/bj3180533

Comparison of the mRNA sequences for Pi class glutathione transferases in different hamster species and the corresponding enzyme activities with anti-benzo[a]pyrene-7,8-dihydrodiol 9,10-epoxide.

S Swedmark 1, B Jernström 1, D Jenssen 1
PMCID: PMC1217653  PMID: 8809043

Abstract

Glutathione S-transferase (GST) of class Pi (GST Pi) is known to detoxify the mutagenic and carcinogenic (+)-anti-benzo[a]pyrene-7, 8-dihydrodiol 9,10-epoxide [(+)-anti-BPDE] by conjugation with glutathione. Previously, we have shown that Chinese hamster V79 cells contain GST Pi, but seem to lack the capacity to conjugate (+)-anti-BPDE, although these cells do conjugate other substrates with GSH [Romert, Dock, Jenssen and Jernström (1989) Carcinogenesis 10, 1701-1707; Swedmark, Romert, Morgenstern and Jenssen (1992) Carcinogenesis 13, 1719-1723; Swedmark and Jenssen (1994) Gene 139, 251-256]. In the present study we have compared four cell lines derived from different hamster species with respect to GST cDNA sequences and capacity to conjugate (+)-or(-)-anti-BPDE. The cell lines were V79 and Chinese hamster ovary cells (CHO), Armenian hamster lung (AHL) cells and baby hamster kidney (BHK) cells. The sequencing revealed a complete homology between the V79 and CHO cDNA for GST Pi, whereas the corresponding amino acid sequences predicted from the corresponding AHL and BHK cDNAs differed by six and nine amino acids, respectively, from the predicted V79 sequence. None of these changes alone was found to influence the xenobiotic substrate-binding site. The cytosolic fractions from BHK and AHL cells were found to catalyse conjugation of (+)-anti-BPDE with GSH, whereas the corresponding activity in CHO cells was non-detectable. As shown previously, V79 cells were devoid of activity towards (+)-anti-BPDE. All the cell lines studied demonstrated appreciable GST activity towards 1-chloro-2,4-dinitrobenzene, but no activity with (-)-anti-BPDE. The latter result suggests that GST Pi is the sole or predominant GST in these cell lines. This was confirmed by HPLC analysis of purified enzymes obtained by affinity chromatography. However, when the catalytic activities of the pure enzymes were determined, all four different GST Pi enzymes were found to be highly capable of conjugating (+)-anti-BPDE with GSH. This observation indicates the existence of an intracellular factor that selectively inhibits conjugation of (+)-anti-BPDE, but not of 1-chloro-2,4-dinitrobenzene in the V79 and CHO cell lines. This new phenomenon seems to be specific for Chinese hamster, since both these cell lines originate from this species.

Full Text

The Full Text of this article is available as a PDF (526.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bogaards J. J., van Ommen B., van Bladeren P. J. Purification and characterization of eight glutathione S-transferase isoenzymes of hamster. Comparison of subunit composition of enzymes from liver, kidney, testis, pancreas and trachea. Biochem J. 1992 Sep 1;286(Pt 2):383–388. doi: 10.1042/bj2860383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dirr H., Reinemer P., Huber R. Refined crystal structure of porcine class Pi glutathione S-transferase (pGST P1-1) at 2.1 A resolution. J Mol Biol. 1994 Oct 14;243(1):72–92. doi: 10.1006/jmbi.1994.1631. [DOI] [PubMed] [Google Scholar]
  3. García-Sáez I., Párraga A., Phillips M. F., Mantle T. J., Coll M. Molecular structure at 1.8 A of mouse liver class pi glutathione S-transferase complexed with S-(p-nitrobenzyl)glutathione and other inhibitors. J Mol Biol. 1994 Apr 1;237(3):298–314. doi: 10.1006/jmbi.1994.1232. [DOI] [PubMed] [Google Scholar]
  4. Habig W. H., Jakoby W. B. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 1981;77:398–405. doi: 10.1016/s0076-6879(81)77053-8. [DOI] [PubMed] [Google Scholar]
  5. Jernström B., Seidel A., Funk M., Oesch F., Mannervik B. Glutathione conjugation of trans-3,4-dihydroxy 1,2-epoxy 1,2,3,4-tetrahydrobenzo[c]phenanthrene isomers by human glutathione transferases. Carcinogenesis. 1992 Sep;13(9):1549–1555. doi: 10.1093/carcin/13.9.1549. [DOI] [PubMed] [Google Scholar]
  6. Ji X., von Rosenvinge E. C., Johnson W. W., Tomarev S. I., Piatigorsky J., Armstrong R. N., Gilliland G. L. Three-dimensional structure, catalytic properties, and evolution of a sigma class glutathione transferase from squid, a progenitor of the lens S-crystallins of cephalopods. Biochemistry. 1995 Apr 25;34(16):5317–5328. doi: 10.1021/bi00016a003. [DOI] [PubMed] [Google Scholar]
  7. Ketterer B., Christodoulides L. G. Enzymology of cytosolic glutathione S-transferases. Adv Pharmacol. 1994;27:37–69. doi: 10.1016/s1054-3589(08)61029-7. [DOI] [PubMed] [Google Scholar]
  8. Lo J. F., Wang H. F., Tam M. F., Lee T. C. Glutathione S-transferase pi in an arsenic-resistant Chinese hamster ovary cell line. Biochem J. 1992 Dec 15;288(Pt 3):977–982. doi: 10.1042/bj2880977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mannervik B., Danielson U. H. Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem. 1988;23(3):283–337. doi: 10.3109/10409238809088226. [DOI] [PubMed] [Google Scholar]
  10. Meyer D. J., Coles B., Pemble S. E., Gilmore K. S., Fraser G. M., Ketterer B. Theta, a new class of glutathione transferases purified from rat and man. Biochem J. 1991 Mar 1;274(Pt 2):409–414. doi: 10.1042/bj2740409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. O'hUigin C., Li W. H. The molecular clock ticks regularly in muroid rodents and hamsters. J Mol Evol. 1992 Nov;35(5):377–384. doi: 10.1007/BF00171816. [DOI] [PubMed] [Google Scholar]
  12. Ostlund Farrants A. K., Meyer D. J., Coles B., Southan C., Aitken A., Johnson P. J., Ketterer B. The separation of glutathione transferase subunits by using reverse-phase high-pressure liquid chromatography. Biochem J. 1987 Jul 15;245(2):423–428. doi: 10.1042/bj2450423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  14. Reinemer P., Dirr H. W., Ladenstein R., Huber R., Lo Bello M., Federici G., Parker M. W. Three-dimensional structure of class pi glutathione S-transferase from human placenta in complex with S-hexylglutathione at 2.8 A resolution. J Mol Biol. 1992 Sep 5;227(1):214–226. doi: 10.1016/0022-2836(92)90692-d. [DOI] [PubMed] [Google Scholar]
  15. Reinemer P., Dirr H. W., Ladenstein R., Schäffer J., Gallay O., Huber R. The three-dimensional structure of class pi glutathione S-transferase in complex with glutathione sulfonate at 2.3 A resolution. EMBO J. 1991 Aug;10(8):1997–2005. doi: 10.1002/j.1460-2075.1991.tb07729.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Robertson I. G., Guthenberg C., Mannervik B., Jernström B. Differences in stereoselectivity and catalytic efficiency of three human glutathione transferases in the conjugation of glutathione with 7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-oxy-7,8,9,10-tetrahydrobenzo(a)pyrene. Cancer Res. 1986 May;46(5):2220–2224. [PubMed] [Google Scholar]
  17. Robertson I. G., Jensson H., Mannervik B., Jernström B. Glutathione transferases in rat lung: the presence of transferase 7-7, highly efficient in the conjugation of glutathione with the carcinogenic (+)-7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene. Carcinogenesis. 1986 Feb;7(2):295–299. doi: 10.1093/carcin/7.2.295. [DOI] [PubMed] [Google Scholar]
  18. Romert L., Dock L., Jenssen D., Jernström B. Effects of glutathione transferase activity on benzo[a]pyrene 7,8-dihydrodiol metabolism and mutagenesis studied in a mammalian cell co-cultivation assay. Carcinogenesis. 1989 Sep;10(9):1701–1707. doi: 10.1093/carcin/10.9.1701. [DOI] [PubMed] [Google Scholar]
  19. Swedmark S., Jenssen D. Sequence of the mRNA for a glutathione transferase Pi with a different substrate specificity in V79 Chinese hamster lung cells. Gene. 1994 Feb 25;139(2):251–256. doi: 10.1016/0378-1119(94)90765-x. [DOI] [PubMed] [Google Scholar]
  20. Swedmark S., Romert L., Morgenstern R., Jenssen D. Studies on glutathione transferases belonging to class pi in cell lines with different capacities for conjugating (+)-7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene. Carcinogenesis. 1992 Oct;13(10):1719–1723. doi: 10.1093/carcin/13.10.1719. [DOI] [PubMed] [Google Scholar]
  21. Vander Jagt D. L., Hunsaker L. A., Garcia K. B., Royer R. E. Isolation and characterization of the multiple glutathione S-transferases from human liver. Evidence for unique heme-binding sites. J Biol Chem. 1985 Sep 25;260(21):11603–11610. [PubMed] [Google Scholar]
  22. Widersten M., Pearson W. R., Engström A., Mannervik B. Heterologous expression of the allelic variant mu-class glutathione transferases mu and psi. Biochem J. 1991 Jun 1;276(Pt 2):519–524. doi: 10.1042/bj2760519. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES