Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Sep 1;318(Pt 2):603–608. doi: 10.1042/bj3180603

Changes associated with aging and replicative senescence in the regulation of transcription factor nuclear factor-kappa B.

M Helenius 1, M Hänninen 1, S K Lehtinen 1, A Salminen 1
PMCID: PMC1217663  PMID: 8809053

Abstract

Both the aging of animals and the senescence of cultured cells involve an altered pattern of gene expression, suggesting changes in transcription factor regulation. We studied age-related changes in transcription factors nuclear factor (NF)-kappa B, activator protein factor-1 (AP-1) and Sp-1 by using electrophoretic mobility shift binding assays; we also analysed changes in the protein components of NF-kappa B complex with Western blot assays. Nuclear and cytoplasmic extracts were prepared from heart, liver, kidney and brain of young adult and old NMRI mice and Wistar rats as well as from presenescent, senescent and simian virus 40-immortalized human WI-38 fibroblasts. Aging of both mice and rats induced a strong and consistent increase in the nuclear binding activity of NF-kappa B factor in all tissues studied, whereas those of AP-1 and Sp-1 decreased, e.g. in liver. Protein levels of p50, p52 and p65 components of the NF-kappa B complex did not show any age-associated changes in the cytoplasmic fraction but in the nuclear fraction the level of p52 strongly increased in heart and liver during aging. The protein levels of inhibitory I kappa B-alpha and Bcl-3 components were not affected by aging in any of the tissues studied. Replicative cellular senescence of human WI-38 fibroblasts induced a strong decrease in nuclear NF-kappa B, AP-1 and Sp-1 binding activities. Protein levels of p50 and p52 components of NF-kappa B complex were decreased in the nuclear fraction of senescent WI-38 fibroblasts but in the cytoplasm of senescent fibroblasts the level of p65 protein was increased. Cellular senescence also slightly decreased the protein levels of I kappa B-alpha and Bcl-3. Transfection assays with NF-kappa B-enhancer-driven chloramphenicol acetyltransferase reporter gene showed a significant down-regulation of NF-kappa B promoter activity in senescent WI-38 fibroblasts. Results suggest that the aging process might be regulated differently in tissues and cultured fibroblasts, perhaps reflecting differences between mitotic and post-mitotic cells. In tissues, aging seems to involve specific changes in the regulation of NF-kappa B components and perhaps also changes in the DNA-binding affinities of the NF-kappa B complex.

Full Text

The Full Text of this article is available as a PDF (380.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abate C., Patel L., Rauscher F. J., 3rd, Curran T. Redox regulation of fos and jun DNA-binding activity in vitro. Science. 1990 Sep 7;249(4973):1157–1161. doi: 10.1126/science.2118682. [DOI] [PubMed] [Google Scholar]
  2. Ames B. N., Shigenaga M. K., Hagen T. M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7915–7922. doi: 10.1073/pnas.90.17.7915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ames B. N., Shigenaga M. K., Hagen T. M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7915–7922. doi: 10.1073/pnas.90.17.7915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ammendola R., Mesuraca M., Russo T., Cimino F. Sp1 DNA binding efficiency is highly reduced in nuclear extracts from aged rat tissues. J Biol Chem. 1992 Sep 5;267(25):17944–17948. [PubMed] [Google Scholar]
  5. Anderson M. T., Staal F. J., Gitler C., Herzenberg L. A., Herzenberg L. A. Separation of oxidant-initiated and redox-regulated steps in the NF-kappa B signal transduction pathway. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11527–11531. doi: 10.1073/pnas.91.24.11527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Atadja P. W., Stringer K. F., Riabowol K. T. Loss of serum response element-binding activity and hyperphosphorylation of serum response factor during cellular aging. Mol Cell Biol. 1994 Jul;14(7):4991–4999. doi: 10.1128/mcb.14.7.4991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Baeuerle P. A., Baltimore D. Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-kappa B transcription factor. Cell. 1988 Apr 22;53(2):211–217. doi: 10.1016/0092-8674(88)90382-0. [DOI] [PubMed] [Google Scholar]
  8. Calleja M., Peña P., Ugalde C., Ferreiro C., Marco R., Garesse R. Mitochondrial DNA remains intact during Drosophila aging, but the levels of mitochondrial transcripts are significantly reduced. J Biol Chem. 1993 Sep 5;268(25):18891–18897. [PubMed] [Google Scholar]
  9. Cristofalo V. J., Pignolo R. J. Replicative senescence of human fibroblast-like cells in culture. Physiol Rev. 1993 Jul;73(3):617–638. doi: 10.1152/physrev.1993.73.3.617. [DOI] [PubMed] [Google Scholar]
  10. Davidson E. H. Molecular biology of embryonic development: how far have we come in the last ten years? Bioessays. 1994 Sep;16(9):603–615. doi: 10.1002/bies.950160903. [DOI] [PubMed] [Google Scholar]
  11. Dice J. F. Cellular and molecular mechanisms of aging. Physiol Rev. 1993 Jan;73(1):149–159. doi: 10.1152/physrev.1993.73.1.149. [DOI] [PubMed] [Google Scholar]
  12. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dimri G. P., Campisi J. Altered profile of transcription factor-binding activities in senescent human fibroblasts. Exp Cell Res. 1994 May;212(1):132–140. doi: 10.1006/excr.1994.1127. [DOI] [PubMed] [Google Scholar]
  14. Fawcett T. W., Sylvester S. L., Sarge K. D., Morimoto R. I., Holbrook N. J. Effects of neurohormonal stress and aging on the activation of mammalian heat shock factor 1. J Biol Chem. 1994 Dec 23;269(51):32272–32278. [PubMed] [Google Scholar]
  15. Harman D. Free radical theory of aging. Mutat Res. 1992 Sep;275(3-6):257–266. doi: 10.1016/0921-8734(92)90030-s. [DOI] [PubMed] [Google Scholar]
  16. Harman D. Free radical theory of aging. Mutat Res. 1992 Sep;275(3-6):257–266. doi: 10.1016/0921-8734(92)90030-s. [DOI] [PubMed] [Google Scholar]
  17. Helenius M., Hänninen M., Lehtinen S. K., Salminen A. Aging-induced up-regulation of nuclear binding activities of oxidative stress responsive NF-kB transcription factor in mouse cardiac muscle. J Mol Cell Cardiol. 1996 Mar;28(3):487–498. doi: 10.1006/jmcc.1996.0045. [DOI] [PubMed] [Google Scholar]
  18. Li C. C., Dai R. M., Chen E., Longo D. L. Phosphorylation of NF-KB1-p50 is involved in NF-kappa B activation and stable DNA binding. J Biol Chem. 1994 Dec 2;269(48):30089–30092. [PubMed] [Google Scholar]
  19. Mitchell P. J., Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science. 1989 Jul 28;245(4916):371–378. doi: 10.1126/science.2667136. [DOI] [PubMed] [Google Scholar]
  20. Mukhopadhyay T., Roth J. A., Maxwell S. A. Altered expression of the p50 subunit of the NF-kappa B transcription factor complex in non-small cell lung carcinoma. Oncogene. 1995 Sep 7;11(5):999–1003. [PubMed] [Google Scholar]
  21. Naumann M., Scheidereit C. Activation of NF-kappa B in vivo is regulated by multiple phosphorylations. EMBO J. 1994 Oct 3;13(19):4597–4607. doi: 10.1002/j.1460-2075.1994.tb06781.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Orr W. C., Sohal R. S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science. 1994 Feb 25;263(5150):1128–1130. doi: 10.1126/science.8108730. [DOI] [PubMed] [Google Scholar]
  23. Salminen A., Liu P. K., Hsu C. Y. Alteration of transcription factor binding activities in the ischemic rat brain. Biochem Biophys Res Commun. 1995 Jul 26;212(3):939–944. doi: 10.1006/bbrc.1995.2060. [DOI] [PubMed] [Google Scholar]
  24. Schreck R., Albermann K., Baeuerle P. A. Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun. 1992;17(4):221–237. doi: 10.3109/10715769209079515. [DOI] [PubMed] [Google Scholar]
  25. Shakhov A. N., Collart M. A., Vassalli P., Nedospasov S. A., Jongeneel C. V. Kappa B-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor alpha gene in primary macrophages. J Exp Med. 1990 Jan 1;171(1):35–47. doi: 10.1084/jem.171.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Siebenlist U., Franzoso G., Brown K. Structure, regulation and function of NF-kappa B. Annu Rev Cell Biol. 1994;10:405–455. doi: 10.1146/annurev.cb.10.110194.002201. [DOI] [PubMed] [Google Scholar]
  27. Supakar P. C., Jung M. H., Song C. S., Chatterjee B., Roy A. K. Nuclear factor kappa B functions as a negative regulator for the rat androgen receptor gene and NF-kappa B activity increases during the age-dependent desensitization of the liver. J Biol Chem. 1995 Jan 13;270(2):837–842. doi: 10.1074/jbc.270.2.837. [DOI] [PubMed] [Google Scholar]
  28. Supakar P. C., Jung M. H., Song C. S., Chatterjee B., Roy A. K. Nuclear factor kappa B functions as a negative regulator for the rat androgen receptor gene and NF-kappa B activity increases during the age-dependent desensitization of the liver. J Biol Chem. 1995 Jan 13;270(2):837–842. doi: 10.1074/jbc.270.2.837. [DOI] [PubMed] [Google Scholar]
  29. Thakur M. K., Oka T., Natori Y. Gene expression and aging. Mech Ageing Dev. 1993 Jan;66(3):283–298. doi: 10.1016/0047-6374(93)90015-j. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES