Abstract
We previously reported that, in the membranes of HL-60 cells during activation of G-proteins, a phosphate transfer reaction occurs which involves transient G-protein beta subunit (G beta) phosphorylation [Wieland, Nürnberg, Ulibarri, Kaldenberg-Stasch, Schultz and Jakobs (1993) J. Biol. Chem. 268, 18111-18118]. Here, the generality of this phenomenon is evaluated by studying membranes of various tissues obtained from different mammalian species. All membranes tested expressed at least G beta 1 and G beta 2 subunits. Cell membranes from bovine and porcine brain and liver, rat brain and human blood cells exhibited predominantly G beta 1 or both subtypes at roughly equal concentrations. In contrast, significantly more G beta 2 immunoreactivity was detected in membranes from human placenta. Bovine and porcine liver membranes exhibited weak, G beta-specific immunoreactive signals. Conversely, these membranes showed the highest levels of G beta phosphorylation after incubation with [gamma-32P]GTP or 35S-labelled guanosine 5'-[gamma-thio]triphosphate. Interestingly, G beta-specific phosphorylation of membranes from human erythrocytes and platelets was very weak. G beta phosphorylation was confirmed by immunoprecipitation with G beta-specific antibodies, and the target amino acid was identified as histidine. On SDS/PAGE, phosphorylated or thiophosphorylated G beta-proteins differed in their apparent molecular size from unmodified G beta-proteins. Moreover, phosphorylated G beta-proteins differed in a species-dependent fashion in their electrophoretic mobility. Solubilization of membrane proteins with detergent did not abolish G beta phosphorylation. In contrast, reconstituted purified Gi/Go proteins showed no G beta phosphorylation. From these experiments we conclude that: (i) G beta phosphorylation represents a general phenomenon occurring in the cells of various species to different degrees, (ii) phosphorylated G beta-proteins exhibit species-dependent diverse electrophoretic mobilities, and (iii) G beta phosphorylation requires a membrane-associated cofactor(s) which is lost during routine G-protein purification.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Crovello C. S., Furie B. C., Furie B. Histidine phosphorylation of P-selectin upon stimulation of human platelets: a novel pathway for activation-dependent signal transduction. Cell. 1995 Jul 28;82(2):279–286. doi: 10.1016/0092-8674(95)90315-1. [DOI] [PubMed] [Google Scholar]
- Evans T., Fawzi A., Fraser E. D., Brown M. L., Northup J. K. Purification of a beta 35 form of the beta gamma complex common to G-proteins from human placental membranes. J Biol Chem. 1987 Jan 5;262(1):176–181. [PubMed] [Google Scholar]
- Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
- Harhammer R., Nürnberg B., Spicher K., Schultz G. Purification of the G-protein G13 from rat brain membranes. Biochem J. 1994 Oct 1;303(Pt 1):135–140. doi: 10.1042/bj3030135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinsch K. D., Tychowiecka I., Gausepohl H., Frank R., Rosenthal W., Schultz G. Tissue distribution of beta 1- and beta 2-subunits of regulatory guanine nucleotide-binding proteins. Biochim Biophys Acta. 1989 Sep 4;1013(1):60–67. doi: 10.1016/0167-4889(89)90128-6. [DOI] [PubMed] [Google Scholar]
- Kaldenberg-Stasch S., Baden M., Fesseler B., Jakobs K. H., Wieland T. Receptor-stimulated guanine-nucleotide-triphosphate binding to guanine-nucleotide-binding regulatory proteins. Nucleotide exchange and beta-subunit-mediated phosphotransfer reactions. Eur J Biochem. 1994 Apr 1;221(1):25–33. doi: 10.1111/j.1432-1033.1994.tb18711.x. [DOI] [PubMed] [Google Scholar]
- Körner C., Nürnberg B., Uhde M., Braulke T. Mannose 6-phosphate/insulin-like growth factor II receptor fails to interact with G-proteins. Analysis of mutant cytoplasmic receptor domains. J Biol Chem. 1995 Jan 6;270(1):287–295. doi: 10.1074/jbc.270.1.287. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Motojima K., Goto S. A protein histidine kinase induced in rat liver by peroxisome proliferators. In vitro activation by Ras protein and guanine nucleotides. FEBS Lett. 1993 Mar 15;319(1-2):75–79. doi: 10.1016/0014-5793(93)80040-2. [DOI] [PubMed] [Google Scholar]
- Motojima K., Goto S. Histidyl phosphorylation and dephosphorylation of P36 in rat liver extract. J Biol Chem. 1994 Mar 25;269(12):9030–9037. [PubMed] [Google Scholar]
- Neer E. J. Heterotrimeric G proteins: organizers of transmembrane signals. Cell. 1995 Jan 27;80(2):249–257. doi: 10.1016/0092-8674(95)90407-7. [DOI] [PubMed] [Google Scholar]
- Nürnberg B., Gudermann T., Schultz G. Receptors and G proteins as primary components of transmembrane signal transduction. Part 2. G proteins: structure and function. J Mol Med (Berl) 1995 Mar;73(3):123–132. doi: 10.1007/BF00198240. [DOI] [PubMed] [Google Scholar]
- Nürnberg B., Hoppe R., Rümenapp U., Harhammer R., Nürnberg E. A non-ionic vesicle lipid enhances mastoparan-stimulated GTPase activity of heterotrimeric G-proteins. Pharm Res. 1995 Mar;12(3):366–369. doi: 10.1023/a:1016296300654. [DOI] [PubMed] [Google Scholar]
- Nürnberg B., Spicher K., Harhammer R., Bosserhoff A., Frank R., Hilz H., Schultz G. Purification of a novel G-protein alpha 0-subtype from mammalian brain. Biochem J. 1994 Jun 1;300(Pt 2):387–394. doi: 10.1042/bj3000387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson G. L. Determination of total protein. Methods Enzymol. 1983;91:95–119. doi: 10.1016/s0076-6879(83)91014-5. [DOI] [PubMed] [Google Scholar]
- Sternweis P. C. The active role of beta gamma in signal transduction. Curr Opin Cell Biol. 1994 Apr;6(2):198–203. doi: 10.1016/0955-0674(94)90136-8. [DOI] [PubMed] [Google Scholar]
- Walseth T. F., Johnson R. A. The enzymatic preparation of [alpha-(32)P]nucleoside triphosphates, cyclic [32P] AMP, and cyclic [32P] GMP. Biochim Biophys Acta. 1979 Mar 28;562(1):11–31. doi: 10.1016/0005-2787(79)90122-9. [DOI] [PubMed] [Google Scholar]
- Wei Y. F., Matthews H. R. Identification of phosphohistidine in proteins and purification of protein-histidine kinases. Methods Enzymol. 1991;200:388–414. doi: 10.1016/0076-6879(91)00156-q. [DOI] [PubMed] [Google Scholar]
- Wieland T., Nürnberg B., Ulibarri I., Kaldenberg-Stasch S., Schultz G., Jakobs K. H. Guanine nucleotide-specific phosphate transfer by guanine nucleotide-binding regulatory protein beta-subunits. Characterization of the phosphorylated amino acid. J Biol Chem. 1993 Aug 25;268(24):18111–18118. [PubMed] [Google Scholar]
- Wieland T., Ronzani M., Jakobs K. H. Stimulation and inhibition of human platelet adenylylcyclase by thiophosphorylated transducin beta gamma-subunits. J Biol Chem. 1992 Oct 15;267(29):20791–20797. [PubMed] [Google Scholar]
- Wieland T., Ulibarri I., Gierschik P., Jakobs K. H. Activation of signal-transducing guanine-nucleotide-binding regulatory proteins by guanosine 5'-[gamma-thio]triphosphate. Information transfer by intermediately thiophosphorylated beta gamma subunits. Eur J Biochem. 1991 Mar 28;196(3):707–716. doi: 10.1111/j.1432-1033.1991.tb15869.x. [DOI] [PubMed] [Google Scholar]
- Zetterqvist O. Isolation of I-[32P]phosphohistidine from rat-liver cell sap after incubation with [32P]adenosine triphosphate. Biochim Biophys Acta. 1967 Mar 22;136(2):279–285. doi: 10.1016/0304-4165(67)90073-6. [DOI] [PubMed] [Google Scholar]