Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Sep 1;318(Pt 2):717–722. doi: 10.1042/bj3180717

Species- and tissue-dependent diversity of G-protein beta subunit phosphorylation: evidence for a cofactor.

B Nürnberg 1, R Harhammer 1, T Exner 1, R A Schulze 1, T Wieland 1
PMCID: PMC1217677  PMID: 8809067

Abstract

We previously reported that, in the membranes of HL-60 cells during activation of G-proteins, a phosphate transfer reaction occurs which involves transient G-protein beta subunit (G beta) phosphorylation [Wieland, Nürnberg, Ulibarri, Kaldenberg-Stasch, Schultz and Jakobs (1993) J. Biol. Chem. 268, 18111-18118]. Here, the generality of this phenomenon is evaluated by studying membranes of various tissues obtained from different mammalian species. All membranes tested expressed at least G beta 1 and G beta 2 subunits. Cell membranes from bovine and porcine brain and liver, rat brain and human blood cells exhibited predominantly G beta 1 or both subtypes at roughly equal concentrations. In contrast, significantly more G beta 2 immunoreactivity was detected in membranes from human placenta. Bovine and porcine liver membranes exhibited weak, G beta-specific immunoreactive signals. Conversely, these membranes showed the highest levels of G beta phosphorylation after incubation with [gamma-32P]GTP or 35S-labelled guanosine 5'-[gamma-thio]triphosphate. Interestingly, G beta-specific phosphorylation of membranes from human erythrocytes and platelets was very weak. G beta phosphorylation was confirmed by immunoprecipitation with G beta-specific antibodies, and the target amino acid was identified as histidine. On SDS/PAGE, phosphorylated or thiophosphorylated G beta-proteins differed in their apparent molecular size from unmodified G beta-proteins. Moreover, phosphorylated G beta-proteins differed in a species-dependent fashion in their electrophoretic mobility. Solubilization of membrane proteins with detergent did not abolish G beta phosphorylation. In contrast, reconstituted purified Gi/Go proteins showed no G beta phosphorylation. From these experiments we conclude that: (i) G beta phosphorylation represents a general phenomenon occurring in the cells of various species to different degrees, (ii) phosphorylated G beta-proteins exhibit species-dependent diverse electrophoretic mobilities, and (iii) G beta phosphorylation requires a membrane-associated cofactor(s) which is lost during routine G-protein purification.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Crovello C. S., Furie B. C., Furie B. Histidine phosphorylation of P-selectin upon stimulation of human platelets: a novel pathway for activation-dependent signal transduction. Cell. 1995 Jul 28;82(2):279–286. doi: 10.1016/0092-8674(95)90315-1. [DOI] [PubMed] [Google Scholar]
  2. Evans T., Fawzi A., Fraser E. D., Brown M. L., Northup J. K. Purification of a beta 35 form of the beta gamma complex common to G-proteins from human placental membranes. J Biol Chem. 1987 Jan 5;262(1):176–181. [PubMed] [Google Scholar]
  3. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  4. Harhammer R., Nürnberg B., Spicher K., Schultz G. Purification of the G-protein G13 from rat brain membranes. Biochem J. 1994 Oct 1;303(Pt 1):135–140. doi: 10.1042/bj3030135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hinsch K. D., Tychowiecka I., Gausepohl H., Frank R., Rosenthal W., Schultz G. Tissue distribution of beta 1- and beta 2-subunits of regulatory guanine nucleotide-binding proteins. Biochim Biophys Acta. 1989 Sep 4;1013(1):60–67. doi: 10.1016/0167-4889(89)90128-6. [DOI] [PubMed] [Google Scholar]
  6. Kaldenberg-Stasch S., Baden M., Fesseler B., Jakobs K. H., Wieland T. Receptor-stimulated guanine-nucleotide-triphosphate binding to guanine-nucleotide-binding regulatory proteins. Nucleotide exchange and beta-subunit-mediated phosphotransfer reactions. Eur J Biochem. 1994 Apr 1;221(1):25–33. doi: 10.1111/j.1432-1033.1994.tb18711.x. [DOI] [PubMed] [Google Scholar]
  7. Körner C., Nürnberg B., Uhde M., Braulke T. Mannose 6-phosphate/insulin-like growth factor II receptor fails to interact with G-proteins. Analysis of mutant cytoplasmic receptor domains. J Biol Chem. 1995 Jan 6;270(1):287–295. doi: 10.1074/jbc.270.1.287. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Motojima K., Goto S. A protein histidine kinase induced in rat liver by peroxisome proliferators. In vitro activation by Ras protein and guanine nucleotides. FEBS Lett. 1993 Mar 15;319(1-2):75–79. doi: 10.1016/0014-5793(93)80040-2. [DOI] [PubMed] [Google Scholar]
  11. Motojima K., Goto S. Histidyl phosphorylation and dephosphorylation of P36 in rat liver extract. J Biol Chem. 1994 Mar 25;269(12):9030–9037. [PubMed] [Google Scholar]
  12. Neer E. J. Heterotrimeric G proteins: organizers of transmembrane signals. Cell. 1995 Jan 27;80(2):249–257. doi: 10.1016/0092-8674(95)90407-7. [DOI] [PubMed] [Google Scholar]
  13. Nürnberg B., Gudermann T., Schultz G. Receptors and G proteins as primary components of transmembrane signal transduction. Part 2. G proteins: structure and function. J Mol Med (Berl) 1995 Mar;73(3):123–132. doi: 10.1007/BF00198240. [DOI] [PubMed] [Google Scholar]
  14. Nürnberg B., Hoppe R., Rümenapp U., Harhammer R., Nürnberg E. A non-ionic vesicle lipid enhances mastoparan-stimulated GTPase activity of heterotrimeric G-proteins. Pharm Res. 1995 Mar;12(3):366–369. doi: 10.1023/a:1016296300654. [DOI] [PubMed] [Google Scholar]
  15. Nürnberg B., Spicher K., Harhammer R., Bosserhoff A., Frank R., Hilz H., Schultz G. Purification of a novel G-protein alpha 0-subtype from mammalian brain. Biochem J. 1994 Jun 1;300(Pt 2):387–394. doi: 10.1042/bj3000387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Peterson G. L. Determination of total protein. Methods Enzymol. 1983;91:95–119. doi: 10.1016/s0076-6879(83)91014-5. [DOI] [PubMed] [Google Scholar]
  17. Sternweis P. C. The active role of beta gamma in signal transduction. Curr Opin Cell Biol. 1994 Apr;6(2):198–203. doi: 10.1016/0955-0674(94)90136-8. [DOI] [PubMed] [Google Scholar]
  18. Walseth T. F., Johnson R. A. The enzymatic preparation of [alpha-(32)P]nucleoside triphosphates, cyclic [32P] AMP, and cyclic [32P] GMP. Biochim Biophys Acta. 1979 Mar 28;562(1):11–31. doi: 10.1016/0005-2787(79)90122-9. [DOI] [PubMed] [Google Scholar]
  19. Wei Y. F., Matthews H. R. Identification of phosphohistidine in proteins and purification of protein-histidine kinases. Methods Enzymol. 1991;200:388–414. doi: 10.1016/0076-6879(91)00156-q. [DOI] [PubMed] [Google Scholar]
  20. Wieland T., Nürnberg B., Ulibarri I., Kaldenberg-Stasch S., Schultz G., Jakobs K. H. Guanine nucleotide-specific phosphate transfer by guanine nucleotide-binding regulatory protein beta-subunits. Characterization of the phosphorylated amino acid. J Biol Chem. 1993 Aug 25;268(24):18111–18118. [PubMed] [Google Scholar]
  21. Wieland T., Ronzani M., Jakobs K. H. Stimulation and inhibition of human platelet adenylylcyclase by thiophosphorylated transducin beta gamma-subunits. J Biol Chem. 1992 Oct 15;267(29):20791–20797. [PubMed] [Google Scholar]
  22. Wieland T., Ulibarri I., Gierschik P., Jakobs K. H. Activation of signal-transducing guanine-nucleotide-binding regulatory proteins by guanosine 5'-[gamma-thio]triphosphate. Information transfer by intermediately thiophosphorylated beta gamma subunits. Eur J Biochem. 1991 Mar 28;196(3):707–716. doi: 10.1111/j.1432-1033.1991.tb15869.x. [DOI] [PubMed] [Google Scholar]
  23. Zetterqvist O. Isolation of I-[32P]phosphohistidine from rat-liver cell sap after incubation with [32P]adenosine triphosphate. Biochim Biophys Acta. 1967 Mar 22;136(2):279–285. doi: 10.1016/0304-4165(67)90073-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES