Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Sep 1;318(Pt 2):723–728. doi: 10.1042/bj3180723

Purinergic stimulation of rat cardiomyocytes induces tyrosine phosphorylation and membrane association of phospholipase C gamma: a major mechanism for InsP3 generation.

M Puceat 1, G Vassort 1
PMCID: PMC1217678  PMID: 8809068

Abstract

Phospholipase C gamma (PLC gamma) expression and activation by a purinergic agonist were investigated in adult rat cardiomyocytes. PLC gamma is expressed in isolated cardiomyocytes. Stimulation of cells with extracellular ATP induces a rapid increase in membrane-associated PLC gamma immunoreactivity most probably due to redistribution of the lipase from the cytosol to the membrane. The purine triggers a significant phosphorylation on tyrosine residues of a cytosolic pool of PLC gamma with a time course that correlates with that of translocation. Extracellular ATP also increases intracellular Ins(1,4,5)P3 content. All these events (translocation and phosphorylation of PLC gamma, InsP3 formation) are blocked by genistein, a tyrosine kinase inhibitor. The purinergic effect on both PLC gamma translocation and phosphorylation are Ca-sensitive. We thus propose that the purinergic stimulation activates a non-receptor tyrosine kinase that phosphorylates PLC gamma in the presence of an increased Ca level and induces PLC gamma redistribution to the membrane. There, PLC gamma becomes activated leading to the hydrolysis of phosphatidylinositol diphosphate and in turn Ins(1,4,5)P3 formation. This cascade of events may play a significant role in the induction of arrhythmogenesis by purinergic agonists.

Full Text

The Full Text of this article is available as a PDF (650.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama T., Ishida J., Nakagawa S., Ogawara H., Watanabe S., Itoh N., Shibuya M., Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987 Apr 25;262(12):5592–5595. [PubMed] [Google Scholar]
  2. Barnard E. A., Burnstock G., Webb T. E. G protein-coupled receptors for ATP and other nucleotides: a new receptor family. Trends Pharmacol Sci. 1994 Mar;15(3):67–70. doi: 10.1016/0165-6147(94)90280-1. [DOI] [PubMed] [Google Scholar]
  3. Boarder M. R., Weisman G. A., Turner J. T., Wilkinson G. F. G protein-coupled P2 purinoceptors: from molecular biology to functional responses. Trends Pharmacol Sci. 1995 Apr;16(4):133–139. doi: 10.1016/s0165-6147(00)89001-x. [DOI] [PubMed] [Google Scholar]
  4. Cockcroft S., Thomas G. M. Inositol-lipid-specific phospholipase C isoenzymes and their differential regulation by receptors. Biochem J. 1992 Nov 15;288(Pt 1):1–14. doi: 10.1042/bj2880001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Du X. J., Anderson K. E., Jacobsen A., Woodcock E. A., Dart A. M. Suppression of ventricular arrhythmias during ischemia-reperfusion by agents inhibiting Ins(1,4,5)P3 release. Circulation. 1995 Jun 1;91(11):2712–2716. doi: 10.1161/01.cir.91.11.2712. [DOI] [PubMed] [Google Scholar]
  6. Fukazawa H., Li P. M., Yamamoto C., Murakami Y., Mizuno S., Uehara Y. Specific inhibition of cytoplasmic protein tyrosine kinases by herbimycin A in vitro. Biochem Pharmacol. 1991 Oct 9;42(9):1661–1671. doi: 10.1016/0006-2952(91)90500-5. [DOI] [PubMed] [Google Scholar]
  7. Glenney J. Two related but distinct forms of the Mr 36,000 tyrosine kinase substrate (calpactin) that interact with phospholipid and actin in a Ca2+-dependent manner. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4258–4262. doi: 10.1073/pnas.83.12.4258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gusovsky F., Lueders J. E., Kohn E. C., Felder C. C. Muscarinic receptor-mediated tyrosine phosphorylation of phospholipase C-gamma. An alternative mechanism for cholinergic-induced phosphoinositide breakdown. J Biol Chem. 1993 Apr 15;268(11):7768–7772. [PubMed] [Google Scholar]
  9. Hansen C. A., Schroering A. G., Robishaw J. D. Subunit expression of signal transducing G proteins in cardiac tissue: implications for phospholipase C-beta regulation. J Mol Cell Cardiol. 1995 Jan;27(1):471–484. doi: 10.1016/s0022-2828(08)80043-0. [DOI] [PubMed] [Google Scholar]
  10. Koblan K. S., Schaber M. D., Edwards G., Gibbs J. B., Pompliano D. L. src-homology 2 (SH2) domain ligation as an allosteric regulator: modulation of phosphoinositide-specific phospholipase C gamma 1 structure and activity. Biochem J. 1995 Feb 1;305(Pt 3):745–751. doi: 10.1042/bj3050745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Lee S. B., Rhee S. G. Significance of PIP2 hydrolysis and regulation of phospholipase C isozymes. Curr Opin Cell Biol. 1995 Apr;7(2):183–189. doi: 10.1016/0955-0674(95)80026-3. [DOI] [PubMed] [Google Scholar]
  13. Legssyer A., Poggioli J., Renard D., Vassort G. ATP and other adenine compounds increase mechanical activity and inositol trisphosphate production in rat heart. J Physiol. 1988 Jul;401:185–199. doi: 10.1113/jphysiol.1988.sp017157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marrero M. B., Schieffer B., Paxton W. G., Schieffer E., Bernstein K. E. Electroporation of pp60c-src antibodies inhibits the angiotensin II activation of phospholipase C-gamma 1 in rat aortic smooth muscle cells. J Biol Chem. 1995 Jun 30;270(26):15734–15738. doi: 10.1074/jbc.270.26.15734. [DOI] [PubMed] [Google Scholar]
  15. Nakanishi O., Shibasaki F., Hidaka M., Homma Y., Takenawa T. Phospholipase C-gamma 1 associates with viral and cellular src kinases. J Biol Chem. 1993 May 25;268(15):10754–10759. [PubMed] [Google Scholar]
  16. Nosek T. M., Williams M. F., Zeigler S. T., Godt R. E. Inositol trisphosphate enhances calcium release in skinned cardiac and skeletal muscle. Am J Physiol. 1986 May;250(5 Pt 1):C807–C811. doi: 10.1152/ajpcell.1986.250.5.C807. [DOI] [PubMed] [Google Scholar]
  17. Pucéat M., Clément O., Scamps F., Vassort G. Extracellular ATP-induced acidification leads to cytosolic calcium transient rise in single rat cardiac myocytes. Biochem J. 1991 Feb 15;274(Pt 1):55–62. doi: 10.1042/bj2740055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pucéat M., Hilal-Dandan R., Strulovici B., Brunton L. L., Brown J. H. Differential regulation of protein kinase C isoforms in isolated neonatal and adult rat cardiomyocytes. J Biol Chem. 1994 Jun 17;269(24):16938–16944. [PubMed] [Google Scholar]
  19. Pucéat M., Korichneva I., Cassoly R., Vassort G. Identification of band 3-like proteins and Cl-/HCO3- exchange in isolated cardiomyocytes. J Biol Chem. 1995 Jan 20;270(3):1315–1322. doi: 10.1074/jbc.270.3.1315. [DOI] [PubMed] [Google Scholar]
  20. Rao G. N., Delafontaine P., Runge M. S. Thrombin stimulates phosphorylation of insulin-like growth factor-1 receptor, insulin receptor substrate-1, and phospholipase C-gamma 1 in rat aortic smooth muscle cells. J Biol Chem. 1995 Nov 17;270(46):27871–27875. doi: 10.1074/jbc.270.46.27871. [DOI] [PubMed] [Google Scholar]
  21. Renard D., Poggioli J. Does the inositol tris/tetrakisphosphate pathway exist in rat heart? FEBS Lett. 1987 Jun 8;217(1):117–123. doi: 10.1016/0014-5793(87)81254-1. [DOI] [PubMed] [Google Scholar]
  22. Rhee S. G., Choi K. D. Regulation of inositol phospholipid-specific phospholipase C isozymes. J Biol Chem. 1992 Jun 25;267(18):12393–12396. [PubMed] [Google Scholar]
  23. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ullrich A., Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990 Apr 20;61(2):203–212. doi: 10.1016/0092-8674(90)90801-k. [DOI] [PubMed] [Google Scholar]
  25. Viamonte V. M., Steinberg S. F., Chow Y. K., Legato M. J., Robinson R. B., Rosen M. R. Phospholipase C modulates automaticity of canine cardiac Purkinje fibers. J Pharmacol Exp Ther. 1990 Feb;252(2):886–893. [PubMed] [Google Scholar]
  26. Wahl M. I., Nishibe S., Suh P. G., Rhee S. G., Carpenter G. Epidermal growth factor stimulates tyrosine phosphorylation of phospholipase C-II independently of receptor internalization and extracellular calcium. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1568–1572. doi: 10.1073/pnas.86.5.1568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yang L. J., Rhee S. G., Williamson J. R. Epidermal growth factor-induced activation and translocation of phospholipase C-gamma 1 to the cytoskeleton in rat hepatocytes. J Biol Chem. 1994 Mar 11;269(10):7156–7162. [PubMed] [Google Scholar]
  28. Young S. W., Poole R. C., Hudson A. T., Halestrap A. P., Denton R. M., Tavaré J. M. Effects of tyrosine kinase inhibitors on protein kinase-independent systems. FEBS Lett. 1993 Feb 1;316(3):278–282. doi: 10.1016/0014-5793(93)81308-m. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES