Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Sep 15;318(Pt 3):789–795. doi: 10.1042/bj3180789

Enhanced release of nitric oxide causes increased cytotoxicity of S-nitroso-N-acetyl-DL-penicillamine and sodium nitroprusside under hypoxic conditions.

I Ioannidis 1, M Bätz 1, T Paul 1, H G Korth 1, R Sustmann 1, H De Groot 1
PMCID: PMC1217688  PMID: 8836121

Abstract

S-Nitroso-N-acetyl-DL-penicillamine (SNAP) and sodium nitroprusside (SNP), both of which are known to release nitric oxide (.NO), exhibited cytotoxicity against cultivated endothelial cells. Under hypoxic conditions 5 mM SNAP and 20 mM SNP induced a loss in cell viability of about 90% and 80% respectively, after an 8 h incubation. Under normoxic conditions, cell death was only 45% and 42% respectively within the same time period. Concentrations of .NO liberated from SNAP and SNP were measured by the oxyhaemoglobin method and by two of the recently developed nitric oxide cheletropic traps (NOCTs). The .NO concentrations from SNAP and SNP increased from 74 microM and 28 microM to 136 microM and 66 microM respectively within 15 min of hypoxic incubation, and then decreased to 36 microM and 28 microM. In the respective normoxic incubations the .NO levels from SNAP and SNP remained in the region of about 30 microM and 20 microM respectively. In contrast, spermine/NO adduct (spermineNONOate) was shown to be more toxic under normoxic than under hypoxic conditions. Under either of these conditions, the concentration of .NO liberated from 2 mM spermineNONOate was about 20 microM. The results demonstrate that the cytotoxicity of SNAP and SNP, but not of spermineNONOate, is significantly enhanced under hypoxic compared with normoxic incubations. Studies on the .NO-releasing behaviour of these compounds indicate that the increased toxicity of SNAP and SNP under hypoxic conditions is related to the influence of O2 on the chemical processes by which .NO is produced from the precursors, rather than to an increased sensitivity of the hypoxic cells towards .NO.

Full Text

The Full Text of this article is available as a PDF (662.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnelle D. R., Stamler J. S. NO+, NO, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation. Arch Biochem Biophys. 1995 Apr 20;318(2):279–285. doi: 10.1006/abbi.1995.1231. [DOI] [PubMed] [Google Scholar]
  2. Bates J. N., Baker M. T., Guerra R., Jr, Harrison D. G. Nitric oxide generation from nitroprusside by vascular tissue. Evidence that reduction of the nitroprusside anion and cyanide loss are required. Biochem Pharmacol. 1991 Dec 11;42 (Suppl):S157–S165. doi: 10.1016/0006-2952(91)90406-u. [DOI] [PubMed] [Google Scholar]
  3. Bittrich H., Mátzig A. K., Kráker I., Appel K. E. NO2-induced DNA single strand breaks are inhibited by antioxidative vitamins in V79 cells. Chem Biol Interact. 1993 Mar;86(3):199–211. doi: 10.1016/0009-2797(93)90098-j. [DOI] [PubMed] [Google Scholar]
  4. Darley-Usmar V. M., Hogg N., O'Leary V. J., Wilson M. T., Moncada S. The simultaneous generation of superoxide and nitric oxide can initiate lipid peroxidation in human low density lipoprotein. Free Radic Res Commun. 1992;17(1):9–20. doi: 10.3109/10715769209061085. [DOI] [PubMed] [Google Scholar]
  5. Feelisch M., Noack E. A. Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol. 1987 Jul 2;139(1):19–30. doi: 10.1016/0014-2999(87)90493-6. [DOI] [PubMed] [Google Scholar]
  6. Feelisch M., Noack E. Nitric oxide (NO) formation from nitrovasodilators occurs independently of hemoglobin or non-heme iron. Eur J Pharmacol. 1987 Oct 27;142(3):465–469. doi: 10.1016/0014-2999(87)90090-2. [DOI] [PubMed] [Google Scholar]
  7. Feelisch M., Ostrowski J., Noack E. On the mechanism of NO release from sydnonimines. J Cardiovasc Pharmacol. 1989;14 (Suppl 11):S13–S22. [PubMed] [Google Scholar]
  8. Frank M. J., Johnson J. B., Rubin S. H. Spectrophotometric determination of sodium nitroprusside and its photodegradation products. J Pharm Sci. 1976 Jan;65(1):44–48. doi: 10.1002/jps.2600650107. [DOI] [PubMed] [Google Scholar]
  9. Garg U. C., Hassid A. Inhibition of rat mesangial cell mitogenesis by nitric oxide-generating vasodilators. Am J Physiol. 1989 Jul;257(1 Pt 2):F60–F66. doi: 10.1152/ajprenal.1989.257.1.F60. [DOI] [PubMed] [Google Scholar]
  10. Henry Y., Ducrocq C., Drapier J. C., Servent D., Pellat C., Guissani A. Nitric oxide, a biological effector. Electron paramagnetic resonance detection of nitrosyl-iron-protein complexes in whole cells. Eur Biophys J. 1991;20(1):1–15. doi: 10.1007/BF00183275. [DOI] [PubMed] [Google Scholar]
  11. Hibbs J. B., Jr, Taintor R. R., Vavrin Z., Rachlin E. M. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun. 1988 Nov 30;157(1):87–94. doi: 10.1016/s0006-291x(88)80015-9. [DOI] [PubMed] [Google Scholar]
  12. Hugo-Wissemann D., Anundi I., Lauchart W., Viebahn R., de Groot H. Differences in glycolytic capacity and hypoxia tolerance between hepatoma cells and hepatocytes. Hepatology. 1991 Feb;13(2):297–303. [PubMed] [Google Scholar]
  13. Ignarro L. J., Fukuto J. M., Griscavage J. M., Rogers N. E., Byrns R. E. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from L-arginine. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8103–8107. doi: 10.1073/pnas.90.17.8103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ignarro L. J., Lippton H., Edwards J. C., Baricos W. H., Hyman A. L., Kadowitz P. J., Gruetter C. A. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther. 1981 Sep;218(3):739–749. [PubMed] [Google Scholar]
  15. Ioannidis I., de Groot H. Cytotoxicity of nitric oxide in Fu5 rat hepatoma cells: evidence for co-operative action with hydrogen peroxide. Biochem J. 1993 Dec 1;296(Pt 2):341–345. doi: 10.1042/bj2960341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kröncke K. D., Brenner H. H., Rodriguez M. L., Etzkorn K., Noack E. A., Kolb H., Kolb-Bachofen V. Pancreatic islet cells are highly susceptible towards the cytotoxic effects of chemically generated nitric oxide. Biochim Biophys Acta. 1993 Sep 8;1182(2):221–229. doi: 10.1016/0925-4439(93)90144-p. [DOI] [PubMed] [Google Scholar]
  17. Leeuwenkamp O. R., Van Bennekom W. P., Van der Mark E. J., Bult A. Nitroprusside, antihypertensive drug and analytical reagent. Review of (photo)stability, pharmacology and analytical properties. Pharm Weekbl Sci. 1984 Aug 24;6(4):129–140. doi: 10.1007/BF01954040. [DOI] [PubMed] [Google Scholar]
  18. Marletta M. A., Yoon P. S., Iyengar R., Leaf C. D., Wishnok J. S. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry. 1988 Nov 29;27(24):8706–8711. doi: 10.1021/bi00424a003. [DOI] [PubMed] [Google Scholar]
  19. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  20. Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys. 1991 Aug 1;288(2):481–487. doi: 10.1016/0003-9861(91)90224-7. [DOI] [PubMed] [Google Scholar]
  21. Rao D. N., Cederbaum A. I. Production of nitric oxide and other iron-containing metabolites during the reductive metabolism of nitroprusside by microsomes and by thiols. Arch Biochem Biophys. 1995 Aug 20;321(2):363–371. doi: 10.1006/abbi.1995.1406. [DOI] [PubMed] [Google Scholar]
  22. Rauen U., Hanssen M., Lauchart W., Becker H. D., de Groot H. Energy-dependent injury to cultured sinusoidal endothelial cells of the rat liver in UW solution. Transplantation. 1993 Mar;55(3):469–473. doi: 10.1097/00007890-199303000-00002. [DOI] [PubMed] [Google Scholar]
  23. Richter C., Gogvadze V., Schlapbach R., Schweizer M., Schlegel J. Nitric oxide kills hepatocytes by mobilizing mitochondrial calcium. Biochem Biophys Res Commun. 1994 Dec 15;205(2):1143–1150. doi: 10.1006/bbrc.1994.2785. [DOI] [PubMed] [Google Scholar]
  24. Rochelle L. G., Kruszyna H., Kruszyna R., Barchowsky A., Wilcox D. E., Smith R. P. Bioactivation of nitroprusside by porcine endothelial cells. Toxicol Appl Pharmacol. 1994 Sep;128(1):123–128. doi: 10.1006/taap.1994.1189. [DOI] [PubMed] [Google Scholar]
  25. Singh R. J., Hogg N., Joseph J., Kalyanaraman B. Photosensitized decomposition of S-nitrosothiols and 2-methyl-2-nitrosopropane. Possible use for site-directed nitric oxide production. FEBS Lett. 1995 Feb 20;360(1):47–51. doi: 10.1016/0014-5793(95)00065-h. [DOI] [PubMed] [Google Scholar]
  26. Stamler J. S., Simon D. I., Osborne J. A., Mullins M. E., Jaraki O., Michel T., Singel D. J., Loscalzo J. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):444–448. doi: 10.1073/pnas.89.1.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Volk T., Ioannidis I., Hensel M., deGroot H., Kox W. J. Endothelial damage induced by nitric oxide: synergism with reactive oxygen species. Biochem Biophys Res Commun. 1995 Aug 4;213(1):196–203. doi: 10.1006/bbrc.1995.2116. [DOI] [PubMed] [Google Scholar]
  28. Wang J. F., Komarov P., Sies H., de Groot H. Inhibition of superoxide and nitric oxide release and protection from reoxygenation injury by Ebselen in rat Kupffer cells. Hepatology. 1992 Jun;15(6):1112–1116. doi: 10.1002/hep.1840150623. [DOI] [PubMed] [Google Scholar]
  29. Wang J. F., Komarov P., de Groot H. Luminol chemiluminescence in rat macrophages and granulocytes: the role of NO, O2-/H2O2, and HOCl. Arch Biochem Biophys. 1993 Jul;304(1):189–196. doi: 10.1006/abbi.1993.1338. [DOI] [PubMed] [Google Scholar]
  30. de Groot H., Brecht M. Reoxygenation injury in rat hepatocytes: mediation by O2/H2O2 liberated by sources other than xanthine oxidase. Biol Chem Hoppe Seyler. 1991 Jan;372(1):35–41. doi: 10.1515/bchm3.1991.372.1.35. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES