Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Sep 15;318(Pt 3):805–812. doi: 10.1042/bj3180805

High rates of extracellular superoxide generation by cultured human fibroblasts: involvement of a lipid-metabolizing enzyme.

V B O'Donnell 1, A Azzi 1
PMCID: PMC1217690  PMID: 8836123

Abstract

Expression of NADPH oxidase and low superoxide generation (approx. 0.06 nmol/min per 10(6) cells) by cytokine- or ionophore-stimulated human fibroblasts is known. However, we here show that these cells also contain an ectoplasmic enzyme, distinct from NADPH oxidase, which can generate superoxide (2.19 +/- 0.14 nmol/min per 10(6) cells) at levels similar to phorbol ester-stimulated monocytes on exogenous NADH addition. Superoxide generation was temperature-dependent, insensitive to chelation (desferal), and had a K(m) (app)(NADH) of 11.5 microM. Inhibitor studies showed that there was no involvement of NADPH oxidase (diphenylene iodonium, diphenyl iodonium), prostaglandin H synthase (indomethacin), xanthine oxidase (allopurinol), cytochrome P-450 (metyrapone) or mitochondrial respiration (rotenone, antimycin A). NAD+ was a competitive inhibitor, whereas NADPH supported 40% of the rate seen with NADH. No luminescence was observed after the addition of lactate, malate, pyruvate, GSH or L-cysteine. NADH-stimulated superoxide generation was enhanced by the addition of (3-30 microM) arachidonic acid, linoleic acid or (5S)-hydroxyeicosatetraenoic acid [(5S)-HETE] but not palmitic acid, (15S)-hydroperoxyeicosatetraenoic acid [(15S)-HPETE], (15S)-HETE or (12S)-HETE. Several features suggest involvement of an enzyme related to 15-lipoxygenase, and, in support of this, we show superoxide generation and NADH oxidation by recombinant rabbit reticulocyte 15-lipoxygenase. The large amounts of superoxide measured suggest that the fibroblast extracellular enzyme could be a major source of reactive oxygen species after tissue damage.

Full Text

The Full Text of this article is available as a PDF (631.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambrosio G., Flaherty J. T., Duilio C., Tritto I., Santoro G., Elia P. P., Condorelli M., Chiariello M. Oxygen radicals generated at reflow induce peroxidation of membrane lipids in reperfused hearts. J Clin Invest. 1991 Jun;87(6):2056–2066. doi: 10.1172/JCI115236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barber D. A., Do N. H., Tackett R. L., Capomacchia A. C. Nonsuperoxide lucigenin-enhanced chemiluminescence from phospholipids and human saphenous veins. Free Radic Biol Med. 1995 Mar;18(3):565–569. doi: 10.1016/0891-5849(94)e0140-e. [DOI] [PubMed] [Google Scholar]
  3. Bellavite P. The superoxide-forming enzymatic system of phagocytes. Free Radic Biol Med. 1988;4(4):225–261. doi: 10.1016/0891-5849(88)90044-5. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Buettner G. R. In the absence of catalytic metals ascorbate does not autoxidize at pH 7: ascorbate as a test for catalytic metals. J Biochem Biophys Methods. 1988 May;16(1):27–40. doi: 10.1016/0165-022x(88)90100-5. [DOI] [PubMed] [Google Scholar]
  6. Chaudhri G., Clark I. A., Hunt N. H., Cowden W. B., Ceredig R. Effect of antioxidants on primary alloantigen-induced T cell activation and proliferation. J Immunol. 1986 Oct 15;137(8):2646–2652. [PubMed] [Google Scholar]
  7. Chien K. R., Abrams J., Serroni A., Martin J. T., Farber J. L. Accelerated phospholipid degradation and associated membrane dysfunction in irreversible, ischemic liver cell injury. J Biol Chem. 1978 Jul 10;253(13):4809–4817. [PubMed] [Google Scholar]
  8. Colotta F., Peri G., Villa A., Mantovani A. Rapid killing of actinomycin D-treated tumor cells by human mononuclear cells. I. Effectors belong to the monocyte-macrophage lineage. J Immunol. 1984 Feb;132(2):936–944. [PubMed] [Google Scholar]
  9. Darrow R. A., Organisciak D. T. An improved spectrophotometric triiodide assay for lipid hydroperoxides. Lipids. 1994 Aug;29(8):591–594. doi: 10.1007/BF02536632. [DOI] [PubMed] [Google Scholar]
  10. Ellis J. A., Cross A. R., Jones O. T. Studies on the electron-transfer mechanism of the human neutrophil NADPH oxidase. Biochem J. 1989 Sep 1;262(2):575–579. doi: 10.1042/bj2620575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Finazzi-Agrò A., Menichelli A., Persiani M., Biancini G., Del Principe D. Hydrogen peroxide release from human blood platelets. Biochim Biophys Acta. 1982 Sep 17;718(1):21–25. doi: 10.1016/0304-4165(82)90004-6. [DOI] [PubMed] [Google Scholar]
  12. Ford-Hutchinson A. W., Gresser M., Young R. N. 5-Lipoxygenase. Annu Rev Biochem. 1994;63:383–417. doi: 10.1146/annurev.bi.63.070194.002123. [DOI] [PubMed] [Google Scholar]
  13. Gsell W., Conrad R., Hickethier M., Sofic E., Frölich L., Wichart I., Jellinger K., Moll G., Ransmayr G., Beckmann H. Decreased catalase activity but unchanged superoxide dismutase activity in brains of patients with dementia of Alzheimer type. J Neurochem. 1995 Mar;64(3):1216–1223. doi: 10.1046/j.1471-4159.1995.64031216.x. [DOI] [PubMed] [Google Scholar]
  14. Herman B., Nieminen A. L., Gores G. J., Lemasters J. J. Irreversible injury in anoxic hepatocytes precipitated by an abrupt increase in plasma membrane permeability. FASEB J. 1988 Feb;2(2):146–151. doi: 10.1096/fasebj.2.2.3342967. [DOI] [PubMed] [Google Scholar]
  15. Jones S. A., Hancock J. T., Jones O. T., Neubauer A., Topley N. The expression of NADPH oxidase components in human glomerular mesangial cells: detection of protein and mRNA for p47phox, p67phox, and p22phox. J Am Soc Nephrol. 1995 Jan;5(7):1483–1491. doi: 10.1681/ASN.V571483. [DOI] [PubMed] [Google Scholar]
  16. Jones S. A., Wood J. D., Coffey M. J., Jones O. T. The functional expression of p47-phox and p67-phox may contribute to the generation of superoxide by an NADPH oxidase-like system in human fibroblasts. FEBS Lett. 1994 Nov 28;355(2):178–182. doi: 10.1016/0014-5793(94)01201-6. [DOI] [PubMed] [Google Scholar]
  17. Kaminogo M. Changes of cortical oxidative metabolism and cortical oxygen tension in hypoxia, anoxia and ischaemia. Neurol Res. 1989 Sep;11(3):139–144. doi: 10.1080/01616412.1989.11739879. [DOI] [PubMed] [Google Scholar]
  18. Keyse S. M., Tyrrell R. M. Both near ultraviolet radiation and the oxidizing agent hydrogen peroxide induce a 32-kDa stress protein in normal human skin fibroblasts. J Biol Chem. 1987 Oct 25;262(30):14821–14825. [PubMed] [Google Scholar]
  19. Krieger-Brauer H. I., Kather H. The stimulus-sensitive H2O2-generating system present in human fat-cell plasma membranes is multireceptor-linked and under antagonistic control by hormones and cytokines. Biochem J. 1995 Apr 15;307(Pt 2):543–548. doi: 10.1042/bj3070543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kukreja R. C., Kontos H. A., Hess M. L., Ellis E. F. PGH synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH. Circ Res. 1986 Dec;59(6):612–619. doi: 10.1161/01.res.59.6.612. [DOI] [PubMed] [Google Scholar]
  21. Kühn H., Schewe T., Rapoport S. M. The stereochemistry of the reactions of lipoxygenases and their metabolites. Proposed nomenclature of lipoxygenases and related enzymes. Adv Enzymol Relat Areas Mol Biol. 1986;58:273–311. doi: 10.1002/9780470123041.ch7. [DOI] [PubMed] [Google Scholar]
  22. Langreth S. G. Electron microscope cytochemistry of host-parasite membrane interactions in malaria. Bull World Health Organ. 1977;55(2-3):171–178. [PMC free article] [PubMed] [Google Scholar]
  23. Larsson R., Cerutti P. Oxidants induce phosphorylation of ribosomal protein S6. J Biol Chem. 1988 Nov 25;263(33):17452–17458. [PubMed] [Google Scholar]
  24. Lin W. Responses of corn root protoplasts to exogenous reduced nicotinamide adenine dinucleotide: Oxygen consumption, ion uptake, and membrane potential. Proc Natl Acad Sci U S A. 1982 Jun;79(12):3773–3776. doi: 10.1073/pnas.79.12.3773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. MARGOLIASH E., FROHWIRT N. Spectrum of horse-heart cytochrome c. Biochem J. 1959 Mar;71(3):570–572. doi: 10.1042/bj0710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Matsubara T., Ziff M. Increased superoxide anion release from human endothelial cells in response to cytokines. J Immunol. 1986 Nov 15;137(10):3295–3298. [PubMed] [Google Scholar]
  27. Mayer B., Rauter L., Zenzmaier E., Gleispach H., Esterbauer H. Characterization of lipoxygenase metabolites of arachidonic acid in cultured human skin fibroblasts. Biochim Biophys Acta. 1984 Aug 15;795(1):151–161. doi: 10.1016/0005-2760(84)90116-4. [DOI] [PubMed] [Google Scholar]
  28. Meier B., Cross A. R., Hancock J. T., Kaup F. J., Jones O. T. Identification of a superoxide-generating NADPH oxidase system in human fibroblasts. Biochem J. 1991 Apr 1;275(Pt 1):241–245. doi: 10.1042/bj2750241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Meier B., Jesaitis A. J., Emmendörffer A., Roesler J., Quinn M. T. The cytochrome b-558 molecules involved in the fibroblast and polymorphonuclear leucocyte superoxide-generating NADPH oxidase systems are structurally and genetically distinct. Biochem J. 1993 Jan 15;289(Pt 2):481–486. doi: 10.1042/bj2890481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Meier B., Radeke H. H., Selle S., Younes M., Sies H., Resch K., Habermehl G. G. Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-alpha. Biochem J. 1989 Oct 15;263(2):539–545. doi: 10.1042/bj2630539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Meyer M., Schreck R., Baeuerle P. A. H2O2 and antioxidants have opposite effects on activation of NF-kappa B and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J. 1993 May;12(5):2005–2015. doi: 10.1002/j.1460-2075.1993.tb05850.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mohazzab K. M., Kaminski P. M., Wolin M. S. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol. 1994 Jun;266(6 Pt 2):H2568–H2572. doi: 10.1152/ajpheart.1994.266.6.H2568. [DOI] [PubMed] [Google Scholar]
  33. Murrell G. A., Francis M. J., Bromley L. Modulation of fibroblast proliferation by oxygen free radicals. Biochem J. 1990 Feb 1;265(3):659–665. doi: 10.1042/bj2650659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. O'Donnell B. V., Tew D. G., Jones O. T., England P. J. Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. Biochem J. 1993 Feb 15;290(Pt 1):41–49. doi: 10.1042/bj2900041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Omar H. A., Mohazzab K. M., Mortelliti M. P., Wolin M. S. O2-dependent modulation of calf pulmonary artery tone by lactate: potential role of H2O2 and cGMP. Am J Physiol. 1993 Feb;264(2 Pt 1):L141–L145. doi: 10.1152/ajplung.1993.264.2.L141. [DOI] [PubMed] [Google Scholar]
  36. Pagano P. J., Ito Y., Tornheim K., Gallop P. M., Tauber A. I., Cohen R. A. An NADPH oxidase superoxide-generating system in the rabbit aorta. Am J Physiol. 1995 Jun;268(6 Pt 2):H2274–H2280. doi: 10.1152/ajpheart.1995.268.6.H2274. [DOI] [PubMed] [Google Scholar]
  37. Radeke H. H., Meier B., Topley N., Flöge J., Habermehl G. G., Resch K. Interleukin 1-alpha and tumor necrosis factor-alpha induce oxygen radical production in mesangial cells. Kidney Int. 1990 Feb;37(2):767–775. doi: 10.1038/ki.1990.44. [DOI] [PubMed] [Google Scholar]
  38. Roy P., Roy S. K., Mitra A., Kulkarni A. P. Superoxide generation by lipoxygenase in the presence of NADH and NADPH. Biochim Biophys Acta. 1994 Sep 15;1214(2):171–179. doi: 10.1016/0005-2760(94)90041-8. [DOI] [PubMed] [Google Scholar]
  39. Sahlin K. NADH and NADPH in human skeletal muscle at rest and during ischaemia. Clin Physiol. 1983 Oct;3(5):477–485. doi: 10.1111/j.1475-097x.1983.tb00856.x. [DOI] [PubMed] [Google Scholar]
  40. Sandstrom P. A., Tebbey P. W., Van Cleave S., Buttke T. M. Lipid hydroperoxides induce apoptosis in T cells displaying a HIV-associated glutathione peroxidase deficiency. J Biol Chem. 1994 Jan 14;269(2):798–801. [PubMed] [Google Scholar]
  41. Silverton S. F., Mesaros S., Markham G. D., Malinski T. Osteoclast radical interactions: NADPH causes pulsatile release of NO and stimulates superoxide production. Endocrinology. 1995 Nov;136(11):5244–5247. doi: 10.1210/endo.136.11.7588266. [DOI] [PubMed] [Google Scholar]
  42. Thannickal V. J., Fanburg B. L. Activation of an H2O2-generating NADH oxidase in human lung fibroblasts by transforming growth factor beta 1. J Biol Chem. 1995 Dec 22;270(51):30334–30338. doi: 10.1074/jbc.270.51.30334. [DOI] [PubMed] [Google Scholar]
  43. Tischler M. E., Friedrichs D., Coll K., Williamson J. R. Pyridine nucleotide distributions and enzyme mass action ratios in hepatocytes from fed and starved rats. Arch Biochem Biophys. 1977 Nov;184(1):222–236. doi: 10.1016/0003-9861(77)90346-0. [DOI] [PubMed] [Google Scholar]
  44. Toussaint M., Duboc D., Renault G., Guerin F., Degeorges M. Fluorimétrie laser du NADH. Arch Mal Coeur Vaiss. 1988 Oct;81(Spec No):47–51. [PubMed] [Google Scholar]
  45. Wymann M. P., von Tscharner V., Deranleau D. A., Baggiolini M. Chemiluminescence detection of H2O2 produced by human neutrophils during the respiratory burst. Anal Biochem. 1987 Sep;165(2):371–378. doi: 10.1016/0003-2697(87)90284-3. [DOI] [PubMed] [Google Scholar]
  46. Yokota K., Yamazaki I. Analysis and computer simulation of aerobic oxidation of reduced nicotinamide adenine dinucleotide catalyzed by horseradish peroxidase. Biochemistry. 1977 May 3;16(9):1913–1920. doi: 10.1021/bi00628a024. [DOI] [PubMed] [Google Scholar]
  47. Yokota K., Yamazaki I. Reaction of peroxidase with reduced nicotinamide-adenine dinucleotide and reduced nicotinamide-adenine dinucleotide phosphate. Biochim Biophys Acta. 1965 Aug 24;105(2):301–312. doi: 10.1016/s0926-6593(65)80154-0. [DOI] [PubMed] [Google Scholar]
  48. Zang L. Y., Misra H. P. EPR kinetic studies of superoxide radicals generated during the autoxidation of 1-methyl-4-phenyl-2,3-dihydropyridinium, a bioactivated intermediate of parkinsonian-inducing neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Biol Chem. 1992 Nov 25;267(33):23601–23608. [PubMed] [Google Scholar]
  49. Zor U., Ferber E., Gergely P., Szücs K., Dombrádi V., Goldman R. Reactive oxygen species mediate phorbol ester-regulated tyrosine phosphorylation and phospholipase A2 activation: potentiation by vanadate. Biochem J. 1993 Nov 1;295(Pt 3):879–888. doi: 10.1042/bj2950879. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES