Abstract
We have examined the effects of 11 substitutions of active centre gorge residues of human acetylcholinesterase (HuAChE) on the rates of phosphonylation by 1,2,2-trimethylpropyl methyl-phosphonofluoridate (soman) and the aging of the resulting conjugates. The rates of phosphonylation were reduced to as little as one-seventieth, mainly in mutants of the hydrogen-bond network (Glu-202, Glu-450, Tyr-133). These recombinant enzymes as well as the F338A, W86A, W86F and D74N mutant HuAChEs varied in their resistance to aging (15-3300-fold relative to the wild type). The most dramatic resistance to aging was observed for the phosphonyl conjugate of the mutant W86A enzyme (1850-3300-fold relative to the wild type). It is proposed that Trp-86 contributes to the aging process by stabilizing the evolving carbonium ion on the 1,2,2-trimethylpropyl moiety, via charge-pi interaction. The rate-enhancing effect of Trp-86 provides a rationale for the unique facility of aging in soman-inhibited cholinesterases, compared with the corresponding conjugates in other serine hydrolases. Replacements of Glu-202 by aspartic acid, glutamine or alanine residues resulted in a similar (1/130-1/300) decrease of the rates of aging. A comparable decrease was also observed for the conjugate of the F338A mutant. These results, and the similar pH dependence of aging rates for the wild-type and E202Q and F338A mutant HuAChEs, indicate that Glu-202 is not involved in proton transfer to the phosphonyl moiety. On the basis of these findings and of molecular modelling we suggest that Glu-202 and Phe-338 contribute to the aging process by stabilizing the imidazolium of the catalytic triad His-447 via charge-charge and charge-pi interactions respectively, thereby facilitating an oxonium formation on the phosphonyl moiety.
Full Text
The Full Text of this article is available as a PDF (504.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amitai G., Ashani Y., Gafni A., Silman I. Novel pyrene-containing organophosphates as fluorescent probes for studying aging-induced conformational changes in organophosphate-inhibited acetylcholinesterase. Biochemistry. 1982 Apr 27;21(9):2060–2069. doi: 10.1021/bi00538a013. [DOI] [PubMed] [Google Scholar]
- Barak D., Kronman C., Ordentlich A., Ariel N., Bromberg A., Marcus D., Lazar A., Velan B., Shafferman A. Acetylcholinesterase peripheral anionic site degeneracy conferred by amino acid arrays sharing a common core. J Biol Chem. 1994 Mar 4;269(9):6296–6305. [PubMed] [Google Scholar]
- Barak D., Ordentlich A., Bromberg A., Kronman C., Marcus D., Lazar A., Ariel N., Velan B., Shafferman A. Allosteric modulation of acetylcholinesterase activity by peripheral ligands involves a conformational transition of the anionic subsite. Biochemistry. 1995 Nov 28;34(47):15444–15452. doi: 10.1021/bi00047a008. [DOI] [PubMed] [Google Scholar]
- Bencsura A., Enyedy I., Kovach I. M. Origins and diversity of the aging reaction in phosphonate adducts of serine hydrolase enzymes: what characteristics of the active site do they probe? Biochemistry. 1995 Jul 18;34(28):8989–8999. doi: 10.1021/bi00028a007. [DOI] [PubMed] [Google Scholar]
- Benschop H. P., Konings C. A., Van Genderen J., De Jong L. P. Isolation, anticholinesterase properties, and acute toxicity in mice of the four stereoisomers of the nerve agent soman. Toxicol Appl Pharmacol. 1984 Jan;72(1):61–74. doi: 10.1016/0041-008x(84)90249-7. [DOI] [PubMed] [Google Scholar]
- Berman H. A., Decker M. M. Chiral nature of covalent methylphosphonyl conjugates of acetylcholinesterase. J Biol Chem. 1989 Mar 5;264(7):3951–3956. [PubMed] [Google Scholar]
- Berman H. A., Decker M. M. Kinetic, equilibrium, and spectroscopic studies on dealkylation ("aging") of alkyl organophosphonyl acetylcholinesterase. Electrostatic control of enzyme topography. J Biol Chem. 1986 Aug 15;261(23):10646–10652. [PubMed] [Google Scholar]
- Dougherty D. A. Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science. 1996 Jan 12;271(5246):163–168. doi: 10.1126/science.271.5246.163. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
- Fleisher J. H., Harris L. W. Dealkylation as a mechanism for aging of cholinesterase after poisoning with pinacolyl methylphosphonofluoridate. Biochem Pharmacol. 1965 May;14(5):641–650. doi: 10.1016/0006-2952(65)90082-1. [DOI] [PubMed] [Google Scholar]
- Gibney G., Camp S., Dionne M., MacPhee-Quigley K., Taylor P. Mutagenesis of essential functional residues in acetylcholinesterase. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7546–7550. doi: 10.1073/pnas.87.19.7546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grunwald J., Segall Y., Shirin E., Waysbort D., Steinberg N., Silman I., Ashani Y. Aged and non-aged pyrenebutyl-containing organophosphoryl conjugates of chymotrypsin. Preparation and comparison by 31P-NMR spectroscopy. Biochem Pharmacol. 1989 Oct 1;38(19):3157–3168. doi: 10.1016/0006-2952(89)90608-4. [DOI] [PubMed] [Google Scholar]
- HOBBIGER F. Effect of nicotinhydroxamic acid methiodide on human plasma cholinesterase inhibited by organophosphates containing a dialkylphosphato group. Br J Pharmacol Chemother. 1955 Sep;10(3):356–362. doi: 10.1111/j.1476-5381.1955.tb00884.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harel M., Schalk I., Ehret-Sabatier L., Bouet F., Goeldner M., Hirth C., Axelsen P. H., Silman I., Sussman J. L. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9031–9035. doi: 10.1073/pnas.90.19.9031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harel M., Su C. T., Frolow F., Ashani Y., Silman I., Sussman J. L. Refined crystal structures of "aged" and "non-aged" organophosphoryl conjugates of gamma-chymotrypsin. J Mol Biol. 1991 Oct 5;221(3):909–918. doi: 10.1016/0022-2836(91)80183-u. [DOI] [PubMed] [Google Scholar]
- Harris L. W., Fleisher J. H., Clark J., Cliff W. J. Dealkylation and loss of capacity for reactivation of cholinesterase inhibited by sarin. Science. 1966 Oct 21;154(3747):404–407. doi: 10.1126/science.154.3747.404. [DOI] [PubMed] [Google Scholar]
- Hosea N. A., Berman H. A., Taylor P. Specificity and orientation of trigonal carboxyl esters and tetrahedral alkylphosphonyl esters in cholinesterases. Biochemistry. 1995 Sep 12;34(36):11528–11536. doi: 10.1021/bi00036a028. [DOI] [PubMed] [Google Scholar]
- Keijer J. H., Wolring G. Z. Stereospecific aging of phosphonylated cholinesterases. Biochim Biophys Acta. 1969;185(2):465–468. doi: 10.1016/0005-2744(69)90441-0. [DOI] [PubMed] [Google Scholar]
- Kronman C., Velan B., Gozes Y., Leitner M., Flashner Y., Lazar A., Marcus D., Sery T., Papier Y., Grosfeld H. Production and secretion of high levels of recombinant human acetylcholinesterase in cultured cell lines: microheterogeneity of the catalytic subunit. Gene. 1992 Nov 16;121(2):295–304. doi: 10.1016/0378-1119(92)90134-b. [DOI] [PubMed] [Google Scholar]
- Levy D., Ashani Y. Synthesis and in vitro properties of a powerful quaternary methylphosphonate inhibitor of acetylcholinesterase. A new marker in blood-brain barrier research. Biochem Pharmacol. 1986 Apr 1;35(7):1079–1085. doi: 10.1016/0006-2952(86)90142-5. [DOI] [PubMed] [Google Scholar]
- Loewenthal R., Sancho J., Fersht A. R. Histidine-aromatic interactions in barnase. Elevation of histidine pKa and contribution to protein stability. J Mol Biol. 1992 Apr 5;224(3):759–770. doi: 10.1016/0022-2836(92)90560-7. [DOI] [PubMed] [Google Scholar]
- Masson P., Gouet P., Clery C. Pressure and propylene carbonate denaturation of native and "aged" phosphorylated cholinesterase. J Mol Biol. 1994 May 6;238(3):466–478. doi: 10.1006/jmbi.1994.1305. [DOI] [PubMed] [Google Scholar]
- Michel H. O., Hackley B. E., Jr, Berkowitz L., List G., Hackley E. B., Gillilan W., Pankau M. Ageing and dealkylation of Soman (pinacolylmethylphosphonofluoridate)-inactivated eel cholinesterase. Arch Biochem Biophys. 1967 Jul;121(1):29–34. doi: 10.1016/0003-9861(67)90006-9. [DOI] [PubMed] [Google Scholar]
- Nakagawa S., Yu H. A., Karplus M., Umeyama H. Active site dynamics of acyl-chymotrypsin. Proteins. 1993 Jun;16(2):172–194. doi: 10.1002/prot.340160205. [DOI] [PubMed] [Google Scholar]
- Ordentlich A., Barak D., Kronman C., Ariel N., Segall Y., Velan B., Shafferman A. Contribution of aromatic moieties of tyrosine 133 and of the anionic subsite tryptophan 86 to catalytic efficiency and allosteric modulation of acetylcholinesterase. J Biol Chem. 1995 Feb 3;270(5):2082–2091. doi: 10.1074/jbc.270.5.2082. [DOI] [PubMed] [Google Scholar]
- Ordentlich A., Barak D., Kronman C., Ariel N., Segall Y., Velan B., Shafferman A. The architecture of human acetylcholinesterase active center probed by interactions with selected organophosphate inhibitors. J Biol Chem. 1996 May 17;271(20):11953–11962. doi: 10.1074/jbc.271.20.11953. [DOI] [PubMed] [Google Scholar]
- Ordentlich A., Barak D., Kronman C., Flashner Y., Leitner M., Segall Y., Ariel N., Cohen S., Velan B., Shafferman A. Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket. J Biol Chem. 1993 Aug 15;268(23):17083–17095. [PubMed] [Google Scholar]
- Ordentlich A., Kronman C., Barak D., Stein D., Ariel N., Marcus D., Velan B., Shafferman A. Engineering resistance to 'aging' of phosphylated human acetylcholinesterase. Role of hydrogen bond network in the active center. FEBS Lett. 1993 Nov 15;334(2):215–220. doi: 10.1016/0014-5793(93)81714-b. [DOI] [PubMed] [Google Scholar]
- Qian N., Kovach I. M. Key active site residues in the inhibition of acetylcholinesterases by soman. FEBS Lett. 1993 Dec 27;336(2):263–266. doi: 10.1016/0014-5793(93)80816-d. [DOI] [PubMed] [Google Scholar]
- Radić Z., Quinn D. M., Vellom D. C., Camp S., Taylor P. Allosteric control of acetylcholinesterase catalysis by fasciculin. J Biol Chem. 1995 Sep 1;270(35):20391–20399. doi: 10.1074/jbc.270.35.20391. [DOI] [PubMed] [Google Scholar]
- Rousseaux C. G., Dua A. K. Pharmacology of HI-6, an H-series oxime. Can J Physiol Pharmacol. 1989 Oct;67(10):1183–1189. doi: 10.1139/y89-188. [DOI] [PubMed] [Google Scholar]
- Saxena A., Doctor B. P., Maxwell D. M., Lenz D. E., Radic Z., Taylor P. The role of glutamate-199 in the aging of cholinesterase. Biochem Biophys Res Commun. 1993 Nov 30;197(1):343–349. doi: 10.1006/bbrc.1993.2481. [DOI] [PubMed] [Google Scholar]
- Segall Y., Waysbort D., Barak D., Ariel N., Doctor B. P., Grunwald J., Ashani Y. Direct observation and elucidation of the structures of aged and nonaged phosphorylated cholinesterases by 31P NMR spectroscopy. Biochemistry. 1993 Dec 14;32(49):13441–13450. doi: 10.1021/bi00212a009. [DOI] [PubMed] [Google Scholar]
- Shafferman A., Kronman C., Flashner Y., Leitner M., Grosfeld H., Ordentlich A., Gozes Y., Cohen S., Ariel N., Barak D. Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. J Biol Chem. 1992 Sep 5;267(25):17640–17648. [PubMed] [Google Scholar]
- Shafferman A., Velan B., Ordentlich A., Kronman C., Grosfeld H., Leitner M., Flashner Y., Cohen S., Barak D., Ariel N. Substrate inhibition of acetylcholinesterase: residues affecting signal transduction from the surface to the catalytic center. EMBO J. 1992 Oct;11(10):3561–3568. doi: 10.1002/j.1460-2075.1992.tb05439.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinberg N., van der Drift A. C., Grunwald J., Segall Y., Shirin E., Haas E., Ashani Y., Silman I. Conformational differences between aged and nonaged pyrenebutyl-containing organophosphoryl conjugates of chymotrypsin as detected by optical spectroscopy. Biochemistry. 1989 Feb 7;28(3):1248–1253. doi: 10.1021/bi00429a044. [DOI] [PubMed] [Google Scholar]
- Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]
- Velan B., Grosfeld H., Kronman C., Leitner M., Gozes Y., Lazar A., Flashner Y., Marcus D., Cohen S., Shafferman A. The effect of elimination of intersubunit disulfide bonds on the activity, assembly, and secretion of recombinant human acetylcholinesterase. Expression of acetylcholinesterase Cys-580----Ala mutant. J Biol Chem. 1991 Dec 15;266(35):23977–23984. [PubMed] [Google Scholar]
- de Jong L. P., Kossen S. P. Stereospecific reactivation of human brain and erythrocyte acetylcholinesterase inhibited by 1,2,2-trimethylpropyl methylphosphonofluoridate (soman). Biochim Biophys Acta. 1985 Aug 23;830(3):345–348. doi: 10.1016/0167-4838(85)90294-8. [DOI] [PubMed] [Google Scholar]
- van der Drift A. C., Beck H. C., Dekker W. H., Hulst A. G., Wils E. R. P NMR and mass spectrometry of atropinesterase and some serine proteases phosphorylated with a transition-state analogue. Biochemistry. 1985 Nov 19;24(24):6894–6903. doi: 10.1021/bi00345a023. [DOI] [PubMed] [Google Scholar]