Abstract
The effect of cGMP on noradrenaline-induced intracellular Ca2+ mobilization was investigated in whole-cell voltage-clamped guinea-pig hepatocytes. Treatment of the cells with 8-Br-cGMP (1-500 microM) resulted in an increase in the sensitivity of the cells to noradrenaline and to inositol 1,4,5-trisphosphate (InsP3) photo-released from caged InsP3. The positive effect of 8-Br-cGMP on the Ca2+ release evoked by Ca(2+)-mobilizing agonists or InsP3 was blocked by a protein kinase G (PKG; cGMP-dependent protein kinase) inhibitor, the RP-8-(4-chlorophenylthio)guanosine 3':5'-monophosphorothioate. 8-Br-cGMP affected neither the basal InsP3 concentration nor the noradrenaline-induced production of InsP3. In permeabilized hepatocytes, the dose-response curve for InsP3-induced Ca2+ release was shifted to the left in the presence of 8-Br-cGMP. Furthermore, the treatment with 8-Br-cGMP did not affect the Ca2+ content of the InsP3-sensitive Ca2+ stores. These results indicate that intracellular cGMP potentiates the noradrenaline-induced Ca2+ response by enhancing Ca2+ release from the intracellular Ca2+ stores. We suggest that cGMP increases the apparent affinity of InsP3 receptors for InsP3 in guinea-pig hepatocytes probably by phosphorylation via the activation of PKG.
Full Text
The Full Text of this article is available as a PDF (586.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bachs O., Agell N., Carafoli E. Calcium and calmodulin function in the cell nucleus. Biochim Biophys Acta. 1992 Aug 14;1113(2):259–270. doi: 10.1016/0304-4157(92)90041-8. [DOI] [PubMed] [Google Scholar]
- Bahnson T. D., Pandol S. J., Dionne V. E. Cyclic GMP modulates depletion-activated Ca2+ entry in pancreatic acinar cells. J Biol Chem. 1993 May 25;268(15):10808–10812. [PubMed] [Google Scholar]
- Berridge M. J. The biology and medicine of calcium signalling. Mol Cell Endocrinol. 1994 Jan;98(2):119–124. doi: 10.1016/0303-7207(94)90129-5. [DOI] [PubMed] [Google Scholar]
- Billiar T. R., Curran R. D., Harbrecht B. G., Stadler J., Williams D. L., Ochoa J. B., Di Silvio M., Simmons R. L., Murray S. A. Association between synthesis and release of cGMP and nitric oxide biosynthesis by hepatocytes. Am J Physiol. 1992 Apr;262(4 Pt 1):C1077–C1082. doi: 10.1152/ajpcell.1992.262.4.C1077. [DOI] [PubMed] [Google Scholar]
- Bischof G., Brenman J., Bredt D. S., Machen T. E. Possible regulation of capacitative Ca2+ entry into colonic epithelial cells by NO and cGMP. Cell Calcium. 1995 Apr;17(4):250–262. doi: 10.1016/0143-4160(95)90071-3. [DOI] [PubMed] [Google Scholar]
- Burgess G. M., Bird G. S., Obie J. F., Putney J. W., Jr The mechanism for synergism between phospholipase C- and adenylylcyclase-linked hormones in liver. Cyclic AMP-dependent kinase augments inositol trisphosphate-mediated Ca2+ mobilization without increasing the cellular levels of inositol polyphosphates. J Biol Chem. 1991 Mar 15;266(8):4772–4781. [PubMed] [Google Scholar]
- Butt E., Eigenthaler M., Genieser H. G. (Rp)-8-pCPT-cGMPS, a novel cGMP-dependent protein kinase inhibitor. Eur J Pharmacol. 1994 Oct 14;269(2):265–268. doi: 10.1016/0922-4106(94)90095-7. [DOI] [PubMed] [Google Scholar]
- Capiod T., Ogden D. C. Properties of membrane ion conductances evoked by hormonal stimulation of guinea-pig and rabbit isolated hepatocytes. Proc R Soc Lond B Biol Sci. 1989 Mar 22;236(1283):187–201. doi: 10.1098/rspb.1989.0020. [DOI] [PubMed] [Google Scholar]
- Capiod T., Ogden D. C. The properties of calcium-activated potassium ion channels in guinea-pig isolated hepatocytes. J Physiol. 1989 Feb;409:285–295. doi: 10.1113/jphysiol.1989.sp017497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carter T. D., Ogden D. Kinetics of intracellular calcium release by inositol 1,4,5-trisphosphate and extracellular ATP in porcine cultured aortic endothelial cells. Proc Biol Sci. 1992 Dec 22;250(1329):235–241. doi: 10.1098/rspb.1992.0154. [DOI] [PubMed] [Google Scholar]
- Combettes L., Berthon B., Doucet E., Erlinger S., Claret M. Bile acids mobilise internal Ca2+ independently of external Ca2+ in rat hepatocytes. Eur J Biochem. 1990 Jul 5;190(3):619–623. doi: 10.1111/j.1432-1033.1990.tb15617.x. [DOI] [PubMed] [Google Scholar]
- Combettes L., Dumont M., Berthon B., Erlinger S., Claret M. Release of calcium from the endoplasmic reticulum by bile acids in rat liver cells. J Biol Chem. 1988 Feb 15;263(5):2299–2303. [PubMed] [Google Scholar]
- De Smedt H., Missiaen L., Parys J. B., Bootman M. D., Mertens L., Van Den Bosch L., Casteels R. Determination of relative amounts of inositol trisphosphate receptor mRNA isoforms by ratio polymerase chain reaction. J Biol Chem. 1994 Aug 26;269(34):21691–21698. [PubMed] [Google Scholar]
- Dufour J. F., Turner T. J., Arias I. M. Nitric oxide blocks bile canalicular contraction by inhibiting inositol trisphosphate-dependent calcium mobilization. Gastroenterology. 1995 Mar;108(3):841–849. doi: 10.1016/0016-5085(95)90459-x. [DOI] [PubMed] [Google Scholar]
- Geller D. A., Nussler A. K., Di Silvio M., Lowenstein C. J., Shapiro R. A., Wang S. C., Simmons R. L., Billiar T. R. Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):522–526. doi: 10.1073/pnas.90.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hajnóczky G., Gao E., Nomura T., Hoek J. B., Thomas A. P. Multiple mechanisms by which protein kinase A potentiates inositol 1,4,5-trisphosphate-induced Ca2+ mobilization in permeabilized hepatocytes. Biochem J. 1993 Jul 15;293(Pt 2):413–422. doi: 10.1042/bj2930413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Harbrecht B. G., Billiar T. R. The role of nitric oxide in Kupffer cell-hepatocyte interactions. Shock. 1995 Feb;3(2):79–87. [PubMed] [Google Scholar]
- Horn R., Marty A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol. 1988 Aug;92(2):145–159. doi: 10.1085/jgp.92.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horton R. A., Ceppi E. D., Knowles R. G., Titheradge M. A. Inhibition of hepatic gluconeogenesis by nitric oxide: a comparison with endotoxic shock. Biochem J. 1994 May 1;299(Pt 3):735–739. doi: 10.1042/bj2990735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang H., Shabb J. B., Corbin J. D. Cross-activation: overriding cAMP/cGMP selectivities of protein kinases in tissues. Biochem Cell Biol. 1992 Dec;70(12):1283–1289. doi: 10.1139/o92-175. [DOI] [PubMed] [Google Scholar]
- Joseph S. K., Ryan S. V. Phosphorylation of the inositol trisphosphate receptor in isolated rat hepatocytes. J Biol Chem. 1993 Nov 5;268(31):23059–23065. [PubMed] [Google Scholar]
- Komalavilas P., Lincoln T. M. Phosphorylation of the inositol 1,4,5-trisphosphate receptor by cyclic GMP-dependent protein kinase. J Biol Chem. 1994 Mar 25;269(12):8701–8707. [PubMed] [Google Scholar]
- Lincoln T. M., Cornwell T. L. Intracellular cyclic GMP receptor proteins. FASEB J. 1993 Feb 1;7(2):328–338. doi: 10.1096/fasebj.7.2.7680013. [DOI] [PubMed] [Google Scholar]
- Lincoln T. M., Komalavilas P., Cornwell T. L. Pleiotropic regulation of vascular smooth muscle tone by cyclic GMP-dependent protein kinase. Hypertension. 1994 Jun;23(6 Pt 2):1141–1147. doi: 10.1161/01.hyp.23.6.1141. [DOI] [PubMed] [Google Scholar]
- Marty A., Horn R., Tan Y. P., Zimmerberg J. Delay of the Ca mobilization response to muscarinic stimulation. Soc Gen Physiol Ser. 1989;44:97–110. [PubMed] [Google Scholar]
- Miyazaki M., Wahid S., Bai L., Namba M. Effects of intracellular cyclic AMP and cyclic GMP levels on DNA synthesis of young-adult rat hepatocytes in primary culture. Exp Cell Res. 1992 Jun;200(2):404–409. doi: 10.1016/0014-4827(92)90188-e. [DOI] [PubMed] [Google Scholar]
- Murthy K. S., Severi C., Grider J. R., Makhlouf G. M. Inhibition of IP3 and IP3-dependent Ca2+ mobilization by cyclic nucleotides in isolated gastric muscle cells. Am J Physiol. 1993 May;264(5 Pt 1):G967–G974. doi: 10.1152/ajpgi.1993.264.5.G967. [DOI] [PubMed] [Google Scholar]
- Obolenskaya M., Schulze-Specking A., Plaumann B., Frenzer K., Freudenberg N., Decker K. Nitric oxide production by cells isolated from regenerating rat liver. Biochem Biophys Res Commun. 1994 Nov 15;204(3):1305–1311. doi: 10.1006/bbrc.1994.2605. [DOI] [PubMed] [Google Scholar]
- Ogden D. C., Capiod T., Walker J. W., Trentham D. R. Kinetics of the conductance evoked by noradrenaline, inositol trisphosphate or Ca2+ in guinea-pig isolated hepatocytes. J Physiol. 1990 Mar;422:585–602. doi: 10.1113/jphysiol.1990.sp018002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogden D. C., Khodakhah K., Carter T. D., Gray P. T., Capiod T. Mechanisms of intracellular calcium release during hormone and neurotransmitter action investigated with flash photolysis. J Exp Biol. 1993 Nov;184:105–127. doi: 10.1242/jeb.184.1.105. [DOI] [PubMed] [Google Scholar]
- Ogden D., Khodakhah K., Carter T., Thomas M., Capiod T. Analogue computation of transient changes of intracellular free Ca2+ concentration with the low affinity Ca2+ indicator furaptra during whole-cell patch-clamp recording. Pflugers Arch. 1995 Feb;429(4):587–591. doi: 10.1007/BF00704165. [DOI] [PubMed] [Google Scholar]
- Rapp G., Güth K. A low cost high intensity flash device for photolysis experiments. Pflugers Arch. 1988 Feb;411(2):200–203. doi: 10.1007/BF00582315. [DOI] [PubMed] [Google Scholar]
- Rashed H. M., Nair B. G., Patel T. B. Regulation of hepatic glycolysis and gluconeogenesis by atrial natriuretic peptide. Arch Biochem Biophys. 1992 Nov 1;298(2):640–645. doi: 10.1016/0003-9861(92)90460-e. [DOI] [PubMed] [Google Scholar]
- Richter C., Gogvadze V., Schlapbach R., Schweizer M., Schlegel J. Nitric oxide kills hepatocytes by mobilizing mitochondrial calcium. Biochem Biophys Res Commun. 1994 Dec 15;205(2):1143–1150. doi: 10.1006/bbrc.1994.2785. [DOI] [PubMed] [Google Scholar]
- Stadler J., Barton D., Beil-Moeller H., Diekmann S., Hierholzer C., Erhard W., Heidecke C. D. Hepatocyte nitric oxide biosynthesis inhibits glucose output and competes with urea synthesis for L-arginine. Am J Physiol. 1995 Jan;268(1 Pt 1):G183–G188. doi: 10.1152/ajpgi.1995.268.1.G183. [DOI] [PubMed] [Google Scholar]
- Stadler J., Curran R. D., Ochoa J. B., Harbrecht B. G., Hoffman R. A., Simmons R. L., Billiar T. R. Effect of endogenous nitric oxide on mitochondrial respiration of rat hepatocytes in vitro and in vivo. Arch Surg. 1991 Feb;126(2):186–191. doi: 10.1001/archsurg.1991.01410260074010. [DOI] [PubMed] [Google Scholar]
- Supattapone S., Danoff S. K., Theibert A., Joseph S. K., Steiner J., Snyder S. H. Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8747–8750. doi: 10.1073/pnas.85.22.8747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sánchez-Margalet V., Goberna R. Pancreastatin activates pertussis toxin-sensitive guanylate cyclase and pertussis toxin-insensitive phospholipase C in rat liver membranes. J Cell Biochem. 1994 Jun;55(2):173–181. doi: 10.1002/jcb.240550204. [DOI] [PubMed] [Google Scholar]
- Twort C. H., van Breemen C. Cyclic guanosine monophosphate-enhanced sequestration of Ca2+ by sarcoplasmic reticulum in vascular smooth muscle. Circ Res. 1988 May;62(5):961–964. doi: 10.1161/01.res.62.5.961. [DOI] [PubMed] [Google Scholar]
- Volpe P., Alderson-Lang B. H. Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release. II. Effect of cAMP-dependent protein kinase. Am J Physiol. 1990 Jun;258(6 Pt 1):C1086–C1091. doi: 10.1152/ajpcell.1990.258.6.C1086. [DOI] [PubMed] [Google Scholar]
- White R. E., Lee A. B., Shcherbatko A. D., Lincoln T. M., Schonbrunn A., Armstrong D. L. Potassium channel stimulation by natriuretic peptides through cGMP-dependent dephosphorylation. Nature. 1993 Jan 21;361(6409):263–266. doi: 10.1038/361263a0. [DOI] [PubMed] [Google Scholar]
- Wootton J. F., Corrie J. E., Capiod T., Feeney J., Trentham D. R., Ogden D. C. Kinetics of cytosolic Ca2+ concentration after photolytic release of 1-D-myo-inositol 1,4-bisphosphate 5-phosphorothioate from a caged derivative in guinea pig hepatocytes. Biophys J. 1995 Jun;68(6):2601–2607. doi: 10.1016/S0006-3495(95)80444-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu X., Star R. A., Tortorici G., Muallem S. Depletion of intracellular Ca2+ stores activates nitric-oxide synthase to generate cGMP and regulate Ca2+ influx. J Biol Chem. 1994 Apr 29;269(17):12645–12653. [PubMed] [Google Scholar]