Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Sep 15;318(Pt 3):903–908. doi: 10.1042/bj3180903

Regulation of NAD+ glycohydrolase activity by NAD(+)-dependent auto-ADP-ribosylation.

M K Han 1, J Y Lee 1, Y S Cho 1, Y M Song 1, N H An 1, H R Kim 1, U H Kim 1
PMCID: PMC1217703  PMID: 8836136

Abstract

NAD+ glycohydrolase (NADase; EC 3.2.2.5) is an enzyme that catalyses hydrolysis of NAD+ to produce ADP-ribose and nicotinamide. Its physiological role and the regulation of its enzymic activity have not been fully elucidated. In the present study, the mechanism of self-inactivation of NADase by its substrate, NAD+, was investigated by using intact rabbit erythrocytes and purified NADase. Our results suggest that inactivation of NADase was due an auto-ADP-ribosylation reaction. ADP-ribosylated NADase of rabbit erythrocytes was deADP-ribosylated when incubated without NAD+, and thus enzyme activity was simultaneously restored. These findings suggest that reversible auto-ADP-ribosylation of NADase might regulate the enzyme's activity in vivo.

Full Text

The Full Text of this article is available as a PDF (373.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALIVISATOS S. G., KASHKET S., DENSTEDT O. F. The metabolism of the erythrocyte. IX. Diphosphopyridine nucleotidase of erythrocytes. Can J Biochem Physiol. 1956 Jan;34(1):46–60. [PubMed] [Google Scholar]
  2. Anderson B. M., Yost D. A. Spectrophotometric assay of NADase-catalyzed reactions. Methods Enzymol. 1986;122:169–173. doi: 10.1016/0076-6879(86)22167-9. [DOI] [PubMed] [Google Scholar]
  3. Anderson B. M., Yost D. A. Studies of self-inactivation of bovine seminal fluid NAD glycohydrolase. Chem Biol Interact. 1985 Jul;54(2):159–170. doi: 10.1016/s0009-2797(85)80160-5. [DOI] [PubMed] [Google Scholar]
  4. Anderson B. M., Yuan J. H. NAD glycohydrolase from bovine seminal plasma. Methods Enzymol. 1980;66:144–150. doi: 10.1016/0076-6879(80)66452-0. [DOI] [PubMed] [Google Scholar]
  5. De Wolf M. J., Van Dessel G. A., Lagrou A. R., Hilderson H. J., Dierick W. S. Topography, purification and characterization of thyroidal NAD+ glycohydrolase. Biochem J. 1985 Mar 1;226(2):415–427. doi: 10.1042/bj2260415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Everse K. E., Everse J., Simeral L. S. Bacillus subtilis NADase and its specific protein inhibitor. Methods Enzymol. 1980;66:137–144. doi: 10.1016/0076-6879(80)66451-9. [DOI] [PubMed] [Google Scholar]
  7. Gopinathan K. P., Sirsi M., Vaidyanathan C. S. Nicotinamide-adenine dinucleotide glycohydrolase of Mycobacterium tuberculosis H37Rv. Biochem J. 1964 May;91(2):277–282. doi: 10.1042/bj0910277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Green S., Dobrjansky A. pH-dependent inactivation of nicotinamide--adenine dinucleotide glycohydrolase by its substrate, oxidized nicotinamide--adenine dinucleotide. Biochemistry. 1971 Jun 22;10(13):2496–2500. doi: 10.1021/bi00789a011. [DOI] [PubMed] [Google Scholar]
  9. Grimaldi J. C., Balasubramanian S., Kabra N. H., Shanafelt A., Bazan J. F., Zurawski G., Howard M. C. CD38-mediated ribosylation of proteins. J Immunol. 1995 Jul 15;155(2):811–817. [PubMed] [Google Scholar]
  10. Han M. K., An N. H., Kim U. H. Expression of glycosylphosphatidylinositol-anchored NAD glycohydrolase in differentiated HL60 cells by phorbol ester. Biochem Biophys Res Commun. 1995 Aug 15;213(2):730–736. doi: 10.1006/bbrc.1995.2191. [DOI] [PubMed] [Google Scholar]
  11. Han M. K., Kim J. H., Lee D. G., Kim U. H. Immunohistochemical localization of NAD glycohydrolase in human and rabbit tissues. Histochem Cell Biol. 1995 Sep;104(3):185–189. doi: 10.1007/BF01835151. [DOI] [PubMed] [Google Scholar]
  12. Han M. K., Yim C. Y., An N. H., Kim H. R., Kim U. H. Glycosylphosphatidylinositol-anchored NAD glycohydrolase is released from peritoneal macrophages activated by interferon-gamma and lipopolysaccharide. J Leukoc Biol. 1994 Dec;56(6):792–796. doi: 10.1002/jlb.56.6.792. [DOI] [PubMed] [Google Scholar]
  13. Kim U. H., Han M. K., Park B. H., Kim H. R., An N. H. Function of NAD glycohydrolase in ADP-ribose uptake from NAD by human erythrocytes. Biochim Biophys Acta. 1993 Aug 18;1178(2):121–126. doi: 10.1016/0167-4889(93)90001-6. [DOI] [PubMed] [Google Scholar]
  14. Kim U. H., Kim M. K., Kim J. S., Han M. K., Park B. H., Kim H. R. Purification and characterization of NAD glycohydrolase from rabbit erythrocytes. Arch Biochem Biophys. 1993 Aug 15;305(1):147–152. doi: 10.1006/abbi.1993.1404. [DOI] [PubMed] [Google Scholar]
  15. Kim U. H., Rockwood S. F., Kim H. R., Daynes R. A. Membrane-associated NAD+ glycohydrolase from rabbit erythrocytes is solubilized by phosphatidylinositol-specific phospholipase C. Biochim Biophys Acta. 1988 Apr 14;965(1):76–81. doi: 10.1016/0304-4165(88)90153-5. [DOI] [PubMed] [Google Scholar]
  16. Koch F., Haag F., Kashan A., Thiele H. G. Primary structure of rat RT6.2, a nonglycosylated phosphatidylinositol-linked surface marker of postthymic T cells. Proc Natl Acad Sci U S A. 1990 Feb;87(3):964–967. doi: 10.1073/pnas.87.3.964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LIEBERMAN I. The mechanism of the specific depression of an enzyme activity in cells in tissue culture. J Biol Chem. 1957 Apr;225(2):883–898. [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Maehama T., Nishina H., Hoshino S., Kanaho Y., Katada T. NAD(+)-dependent ADP-ribosylation of T lymphocyte alloantigen RT6.1 reversibly proceeding in intact rat lymphocytes. J Biol Chem. 1995 Sep 29;270(39):22747–22751. doi: 10.1074/jbc.270.39.22747. [DOI] [PubMed] [Google Scholar]
  20. Malavasi F., Funaro A., Roggero S., Horenstein A., Calosso L., Mehta K. Human CD38: a glycoprotein in search of a function. Immunol Today. 1994 Mar;15(3):95–97. doi: 10.1016/0167-5699(94)90148-1. [DOI] [PubMed] [Google Scholar]
  21. Moss J., Stanley S. J., Watkins P. A. Isolation and properties of an NAD- and guanidine-dependent ADP-ribosyltransferase from turkey erythrocytes. J Biol Chem. 1980 Jun 25;255(12):5838–5840. [PubMed] [Google Scholar]
  22. Muller H. M., Muller C. D., Schuber F. NAD+ glycohydrolase, an ecto-enzyme of calf spleen cells. Biochem J. 1983 May 15;212(2):459–464. doi: 10.1042/bj2120459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pekala P. H., Anderson B. M. Studies of bovine erythrocyte NAD glycohydrolase. J Biol Chem. 1978 Oct 25;253(20):7453–7459. [PubMed] [Google Scholar]
  24. Pekala P. H., Yost D. A., Anderson B. M. Self-inactivation of an erythrocyte NAD glycohydrolase. Mol Cell Biochem. 1980 May 28;31(1):49–56. doi: 10.1007/BF00817890. [DOI] [PubMed] [Google Scholar]
  25. Takada T., Iida K., Moss J. Cloning and site-directed mutagenesis of human ADP-ribosylarginine hydrolase. J Biol Chem. 1993 Aug 25;268(24):17837–17843. [PubMed] [Google Scholar]
  26. Tanuma S., Endo H. Identification in human erythrocytes of mono(ADP-ribosyl) protein hydrolase that cleaves a mono(ADP-ribosyl) Gi linkage. FEBS Lett. 1990 Feb 26;261(2):381–384. doi: 10.1016/0014-5793(90)80597-c. [DOI] [PubMed] [Google Scholar]
  27. Tanuma S., Kawashima K., Endo H. An NAD:cysteine ADP-ribosyltransferase is present in human erythrocytes. J Biochem. 1987 Mar;101(3):821–824. doi: 10.1093/jb/101.3.821. [DOI] [PubMed] [Google Scholar]
  28. Ueda K., Hayaishi O. ADP-ribosylation. Annu Rev Biochem. 1985;54:73–100. doi: 10.1146/annurev.bi.54.070185.000445. [DOI] [PubMed] [Google Scholar]
  29. Welsh C. F., Moss J., Vaughan M. ADP-ribosylation factors: a family of approximately 20-kDa guanine nucleotide-binding proteins that activate cholera toxin. Mol Cell Biochem. 1994 Sep;138(1-2):157–166. doi: 10.1007/BF00928458. [DOI] [PubMed] [Google Scholar]
  30. Williams G. T., Ford C. C., Shall S. NAD-glycohydrolase activity in Xenopus laevis oocytes and early embryos. Biochem Biophys Res Commun. 1982 Sep 16;108(1):36–41. doi: 10.1016/0006-291x(82)91828-9. [DOI] [PubMed] [Google Scholar]
  31. Yamada K., Tsuchiya M., Nishikori Y., Shimoyama M. Automodification of arginine-specific ADP-ribosyltransferase purified from chicken peripheral heterophils and alteration of the transferase activity. Arch Biochem Biophys. 1994 Jan;308(1):31–36. doi: 10.1006/abbi.1994.1004. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES