Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Sep 15;318(Pt 3):915–922. doi: 10.1042/bj3180915

Multiple components of arginine and phenylalanine transport induced in neutral and basic amino acid transporter-cRNA-injected Xenopus oocytes.

G J Peter 1, I G Davidson 1, A Ahmed 1, L McIlroy 1, A R Forrester 1, P M Taylor 1
PMCID: PMC1217705  PMID: 8836138

Abstract

The induced uptakes of L-[3H]phenylalanine and L-[3H]arginine in oocytes injected with clonal NBAT (neutral and basic amino acid transporter) cRNA show differential inactivation by pretreatment with N-ethylmaleimide (NEM), revealing at least two distinct transport processes. NEM-resistant arginine transport is inhibited by leucine and phenylalanine but not by alanine or valine; mutual competitive inhibition of NEM-resistant uptake of arginine and phenylalanine indicates that the two amino acids share a single transporter. NEM-sensitive arginine transport is inhibited by leucine, phenylalanine, alanine and valine. At least two NEM-sensitive transporters may be expressed because we have been unable to confirm mutual competitive inhibition between arginine and phenylalanine transport. The NEM-resistant transport mechanism appears to involve distinct but overlapping binding sites for cationic and zwitterionic substrates. NBAT is known to form oligomeric protein complexes in cell membranes, and its functional roles when expressed in Xenopus oocytes may include interaction with oocyte proteins, leading to increased native amino acid transport activities; these resemble NBAT-expressed activities in terms of NEM-sensitivity and apparent substrate range (including an unusual inhibition by beta-phenylalanine.

Full Text

The Full Text of this article is available as a PDF (494.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed A., Peter G. J., Taylor P. M., Harper A. A., Rennie M. J. Sodium-independent currents of opposite polarity evoked by neutral and cationic amino acids in neutral and basic amino acid transporter cRNA-injected oocytes. J Biol Chem. 1995 Apr 14;270(15):8482–8486. doi: 10.1074/jbc.270.15.8482. [DOI] [PubMed] [Google Scholar]
  2. Angelo S., Devés R. Amino acid transport system y+L of human erythrocytes: specificity and cation dependence of the translocation step. J Membr Biol. 1994 Aug;141(2):183–192. doi: 10.1007/BF00238252. [DOI] [PubMed] [Google Scholar]
  3. Bertran J., Werner A., Moore M. L., Stange G., Markovich D., Biber J., Testar X., Zorzano A., Palacin M., Murer H. Expression cloning of a cDNA from rabbit kidney cortex that induces a single transport system for cystine and dibasic and neutral amino acids. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5601–5605. doi: 10.1073/pnas.89.12.5601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bröer S., Bröer A., Hamprecht B. The 4F2hc surface antigen is necessary for expression of system L-like neutral amino acid-transport activity in C6-BU-1 rat glioma cells: evidence from expression studies in Xenopus laevis oocytes. Biochem J. 1995 Dec 15;312(Pt 3):863–870. doi: 10.1042/bj3120863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Calonge M. J., Gasparini P., Chillarón J., Chillón M., Gallucci M., Rousaud F., Zelante L., Testar X., Dallapiccola B., Di Silverio F. Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nat Genet. 1994 Apr;6(4):420–425. doi: 10.1038/ng0494-420. [DOI] [PubMed] [Google Scholar]
  6. Campa M. J., Kilberg M. S. Characterization of neutral and cationic amino acid transport in Xenopus oocytes. J Cell Physiol. 1989 Dec;141(3):645–652. doi: 10.1002/jcp.1041410324. [DOI] [PubMed] [Google Scholar]
  7. Coady M. J., Jalal F., Chen X., Lemay G., Berteloot A., Lapointe J. Y. Electrogenic amino acid exchange via the rBAT transporter. FEBS Lett. 1994 Dec 19;356(2-3):174–178. doi: 10.1016/0014-5793(94)01262-8. [DOI] [PubMed] [Google Scholar]
  8. Devés R., Angelo S., Chávez P. N-ethylmaleimide discriminates between two lysine transport systems in human erythrocytes. J Physiol. 1993 Aug;468:753–766. doi: 10.1113/jphysiol.1993.sp019799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Devés R., Chavez P., Boyd C. A. Identification of a new transport system (y+L) in human erythrocytes that recognizes lysine and leucine with high affinity. J Physiol. 1992 Aug;454:491–501. doi: 10.1113/jphysiol.1992.sp019275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fei Y. J., Prasad P. D., Leibach F. H., Ganapathy V. The amino acid transport system y+L induced in Xenopus laevis oocytes by human choriocarcinoma cell (JAR) mRNA is functionally related to the heavy chain of the 4F2 cell surface antigen. Biochemistry. 1995 Jul 11;34(27):8744–8751. doi: 10.1021/bi00027a025. [DOI] [PubMed] [Google Scholar]
  11. Fincham D. A., Mason D. K., Paterson J. Y., Young J. D. Heterogeneity of amino acid transport in horse erythrocytes: a detailed kinetic analysis of inherited transport variation. J Physiol. 1987 Aug;389:385–409. doi: 10.1113/jphysiol.1987.sp016662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fincham D. A., Mason D. K., Young J. D. Characterization of a novel Na+-independent amino acid transporter in horse erythrocytes. Biochem J. 1985 Apr 1;227(1):13–20. doi: 10.1042/bj2270013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Geering K., Theulaz I., Verrey F., Häuptle M. T., Rossier B. C. A role for the beta-subunit in the expression of functional Na+-K+-ATPase in Xenopus oocytes. Am J Physiol. 1989 Nov;257(5 Pt 1):C851–C858. doi: 10.1152/ajpcell.1989.257.5.C851. [DOI] [PubMed] [Google Scholar]
  14. Miyamoto K., Katai K., Tatsumi S., Sone K., Segawa H., Yamamoto H., Taketani Y., Takada K., Morita K., Kanayama H. Mutations of the basic amino acid transporter gene associated with cystinuria. Biochem J. 1995 Sep 15;310(Pt 3):951–955. doi: 10.1042/bj3100951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pickel V. M., Nirenberg M. J., Chan J., Mosckovitz R., Udenfriend S., Tate S. S. Ultrastructural localization of a neutral and basic amino acid transporter in rat kidney and intestine. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7779–7783. doi: 10.1073/pnas.90.16.7779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tate S. S., Yan N., Udenfriend S. Expression cloning of a Na(+)-independent neutral amino acid transporter from rat kidney. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):1–5. doi: 10.1073/pnas.89.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Taylor P. M., Mackenzie B., Hundal H. S., Robertson E., Rennie M. J. Transport and membrane binding of the glutamine analogue 6-diazo-5-oxo-L-norleucine (DON) in Xenopus laevis oocytes. J Membr Biol. 1992 Jun;128(3):181–191. doi: 10.1007/BF00231811. [DOI] [PubMed] [Google Scholar]
  18. Van Winkle L. J., Campione A. L., Gorman J. M. Inhibition of transport system b0,+ in blastocysts by inorganic and organic cations yields insight into the structure of its amino acid receptor site. Biochim Biophys Acta. 1990 Jun 27;1025(2):215–224. doi: 10.1016/0005-2736(90)90100-3. [DOI] [PubMed] [Google Scholar]
  19. Van Winkle L. J., Campione A. L., Gorman J. M. Na+-independent transport of basic and zwitterionic amino acids in mouse blastocysts by a shared system and by processes which distinguish between these substrates. J Biol Chem. 1988 Mar 5;263(7):3150–3163. [PubMed] [Google Scholar]
  20. Van Winkle L. J. Endogenous amino acid transport systems and expression of mammalian amino acid transport proteins in Xenopus oocytes. Biochim Biophys Acta. 1993 Oct 29;1154(2):157–172. doi: 10.1016/0304-4157(93)90009-d. [DOI] [PubMed] [Google Scholar]
  21. Van Winkle L. J., Mann D. F., Campione A. L., Farrington B. H. Transport of benzenoid amino acids by system T and four broad scope systems in preimplantation mouse conceptuses. Biochim Biophys Acta. 1990 Sep 7;1027(3):268–277. doi: 10.1016/0005-2736(90)90318-i. [DOI] [PubMed] [Google Scholar]
  22. Waldegger S., Schmidt F., Herzer T., Gulbins E., Schuster A., Biber J., Markovich D., Murer H., Busch A. E., Lang F. Heavy metal mediated inhibition of rBAT-induced amino acid transport. Kidney Int. 1995 Jun;47(6):1677–1681. doi: 10.1038/ki.1995.232. [DOI] [PubMed] [Google Scholar]
  23. Wang Y., Tate S. S. Oligomeric structure of a renal cystine transporter: implications in cystinuria. FEBS Lett. 1995 Jul 17;368(2):389–392. doi: 10.1016/0014-5793(95)00685-3. [DOI] [PubMed] [Google Scholar]
  24. Wells R. G., Hediger M. A. Cloning of a rat kidney cDNA that stimulates dibasic and neutral amino acid transport and has sequence similarity to glucosidases. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5596–5600. doi: 10.1073/pnas.89.12.5596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wells R. G., Lee W. S., Kanai Y., Leiden J. M., Hediger M. A. The 4F2 antigen heavy chain induces uptake of neutral and dibasic amino acids in Xenopus oocytes. J Biol Chem. 1992 Aug 5;267(22):15285–15288. [PubMed] [Google Scholar]
  26. Yan N., Mosckovitz R., Gerber L. D., Mathew S., Murty V. V., Tate S. S., Udenfriend S. Characterization of the promoter region of the gene for the rat neutral and basic amino acid transporter and chromosomal localization of the human gene. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7548–7552. doi: 10.1073/pnas.91.16.7548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Young J. D., Mason D. K., Fincham D. A. Topographical similarities between harmaline inhibition sites on Na+-dependent amino acid transport system ASC in human erythrocytes and Na+-independent system asc in horse erythrocytes. J Biol Chem. 1988 Jan 5;263(1):140–143. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES