Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Sep 15;318(Pt 3):955–958. doi: 10.1042/bj3180955

Induction of cell surface blebbing by increased cellular Pi concentration.

M Marcussen 1
PMCID: PMC1217710  PMID: 8836143

Abstract

Cell surface blebbing is an early, reversible characteristic of anoxia described in several different cell types. Blebbing may lead to the formation of large terminal blebs, and ultimately cell death upon rupture of the membrane. In the present work, evidence is presented indicating that Pi may be the immediate mediator of cell surface blebbing: (1) cell surface blebbing can be induced in normoxic Ehrlich ascites tumour cells by a high extracellular concentration of Pp leading to an increase in the cellular Pi concentration; (2) anoxia induces sustained elevation of the cellular Pi concentration and (3) cell surface blebbing during anoxia is reversed upon reoxygenation, and the disappearance of blebbing depends on the decrease in cellular Pi concentration. The rate of disappearance of blebs may be enhanced by the simultaneous addition of adenine and inosine to the growth medium. This leads to a decrease in cellular Pi concentration and to an almost complete restoration of the cellular ATP concentration. It is suggested that Pi is an important mediator of anoxia induced cell damage.

Full Text

The Full Text of this article is available as a PDF (307.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. Aureli T., Miccheli A., Di Cocco M. E., Ghirardi O., Giuliani A., Ramacci M. T., Conti F. Effect of acetyl-L-carnitine on recovery of brain phosphorus metabolites and lactic acid level during reperfusion after cerebral ischemia in the rat--study by 13P- and 1H-NMR spectroscopy. Brain Res. 1994 Apr 18;643(1-2):92–99. doi: 10.1016/0006-8993(94)90013-2. [DOI] [PubMed] [Google Scholar]
  3. Bak M. I., Ingwall J. S. Acidosis during ischemia promotes adenosine triphosphate resynthesis in postischemic rat heart. In vivo regulation of 5'-nucleotidase. J Clin Invest. 1994 Jan;93(1):40–49. doi: 10.1172/JCI116974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bowen J. W., Levinson C. Evidence for monovalent phosphate transport in Ehrlich ascites tumor cells. J Cell Physiol. 1983 Aug;116(2):142–148. doi: 10.1002/jcp.1041160204. [DOI] [PubMed] [Google Scholar]
  5. Bowen J. W., Levinson C. Phosphate concentration and transport in Ehrlich ascites tumor cells: effect of sodium. J Cell Physiol. 1982 Feb;110(2):149–154. doi: 10.1002/jcp.1041100207. [DOI] [PubMed] [Google Scholar]
  6. Carlier M. F., Didry D., Melki R., Chabre M., Pantaloni D. Stabilization of microtubules by inorganic phosphate and its structural analogues, the fluoride complexes of aluminum and beryllium. Biochemistry. 1988 May 17;27(10):3555–3559. doi: 10.1021/bi00410a005. [DOI] [PubMed] [Google Scholar]
  7. Carlier M. F., Pantaloni D. Binding of phosphate to F-ADP-actin and role of F-ADP-Pi-actin in ATP-actin polymerization. J Biol Chem. 1988 Jan 15;263(2):817–825. [PubMed] [Google Scholar]
  8. Fox I. H., Kelley W. N. Human phosphoribosylpyrophosphate synthetase. Distribution, purification, and properties. J Biol Chem. 1971 Sep 25;246(18):5739–5748. [PubMed] [Google Scholar]
  9. Friedman J. E., Haddad G. G. Removal of extracellular sodium prevents anoxia-induced injury in freshly dissociated rat CA1 hippocampal neurons. Brain Res. 1994 Mar 28;641(1):57–64. doi: 10.1016/0006-8993(94)91815-5. [DOI] [PubMed] [Google Scholar]
  10. Gabai V. L., Kabakov A. E., Mosin A. F. Association of blebbing with assembly of cytoskeletal proteins in ATP-depleted EL-4 ascites tumour cells. Tissue Cell. 1992;24(2):171–177. doi: 10.1016/0040-8166(92)90090-t. [DOI] [PubMed] [Google Scholar]
  11. Gabai V. L., Kabakov A. E. Tumor cell resistance to energy deprivation and hyperthermia can be determined by the actin skeleton stability. Cancer Lett. 1993 Jun 15;70(1-2):25–31. doi: 10.1016/0304-3835(93)90070-p. [DOI] [PubMed] [Google Scholar]
  12. Gelfand V. I., Bershadsky A. D. Microtubule dynamics: mechanism, regulation, and function. Annu Rev Cell Biol. 1991;7:93–116. doi: 10.1146/annurev.cb.07.110191.000521. [DOI] [PubMed] [Google Scholar]
  13. Lemasters J. J., DiGuiseppi J., Nieminen A. L., Herman B. Blebbing, free Ca2+ and mitochondrial membrane potential preceding cell death in hepatocytes. Nature. 1987 Jan 1;325(6099):78–81. doi: 10.1038/325078a0. [DOI] [PubMed] [Google Scholar]
  14. Levine S. R., Helpern J. A., Welch K. M., Vande Linde A. M., Sawaya K. L., Brown E. E., Ramadan N. M., Deveshwar R. K., Ordidge R. J. Human focal cerebral ischemia: evaluation of brain pH and energy metabolism with P-31 NMR spectroscopy. Radiology. 1992 Nov;185(2):537–544. doi: 10.1148/radiology.185.2.1410369. [DOI] [PubMed] [Google Scholar]
  15. Marcussen M., Overgaard-Hansen K., Klenow H. Net uptake of orthophosphate in Ehrlich ascites tumor cells in the presence of purine riboside may be rate limiting for the expansion of the pool of ribonucleotides. Biochim Biophys Acta. 1994 Aug 24;1194(1):197–202. doi: 10.1016/0005-2736(94)90220-8. [DOI] [PubMed] [Google Scholar]
  16. Maxwell L., Gavin J. Anti-oxidant therapy improves microvascular ultrastructure and perfusion in postischemic myocardium. Microvasc Res. 1992 May;43(3):255–266. doi: 10.1016/0026-2862(92)90023-i. [DOI] [PubMed] [Google Scholar]
  17. Petersen A., Quistorff B. Inosine/pyruvate/phosphate medium but not adenosine/pyruvate/phosphate medium introduces millimolar amounts of 5-phosphoribosyl 1-pyrophosphate in human erythrocytes. A 31P-n.m.r. study. Biochem J. 1990 Mar 1;266(2):441–446. doi: 10.1042/bj2660441. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES