Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Sep 15;318(Pt 3):1033–1039. doi: 10.1042/bj3181033

Agonist regulation of adenylate cyclase activity in neuroblastoma x glioma hybrid NG108-15 cells transfected to co-express adenylate cyclase type II and the beta 2-adrenoceptor. Evidence that adenylate cyclase is the limiting component for receptor-mediated stimulation of adenylate cyclase activity.

D J MacEwan 1, G D Kim 1, G Milligan 1
PMCID: PMC1217720  PMID: 8836153

Abstract

Stable cell lines, derived from NG108-15 cells and transfected to express both the beta 2-adrenoceptor and adenylate cyclase type II, were produced and examined. The absence of adenylate cyclase type II in the parental cells and its presence in these clones was demonstrated by reverse transcriptase-PCR. Total cellular levels of adenylate cyclase were increased in a number of clones between 3- and 8-fold, as assessed by guanine nucleotide-stimulated specific high-affinity binding of [3H]forskolin to cellular membranes. Basal adenylate cyclase activity was markedly elevated compared with a clone expressing similar levels of the beta 2-adrenoceptor in the absence of adenylate cyclase type II. Each of NaF, forskolin and guanosine 5'-[beta, gamma-imido]triphosphate (a poorly hydrolysed analogue of GTP) produced substantially higher levels of adenylate cyclase activity in membranes of the clones positive for expression of adenylate cyclase type II than was achieved with the parental cells. Both isoprenaline, acting at the introduced beta 2-adrenoceptor, and iloprost, acting at the endogenously expressed IP prostanoid receptor, stimulated adenylate cyclase activity to much higher levels in the clones expressing adenylate cyclase type II compared with the clone lacking this adenylate cyclase; however, the concentration-effect curves for adenylate cyclase stimulation by these two agonists were not different between parental cells and clones over-expressing adenylate cyclase type II. A maximally effective concentration of the beta-adrenoceptor partial agonist ephedrine displayed similar intrinsic activity and potency to stimulate adenylate cyclase in membranes of clones both with and without adenylate cyclase type II. Both secretin and 5'-N-ethylcarbox-amidoadenosine (acting at an endogenous A2 adenosine receptor) were also able to produce substantially greater maximal activations of adenylate cyclase in the clones expressing excess adenylate cyclase type II, without alterations in agonist intrinsic activity or potency. These results demonstrate that the maximal output of the stimulatory arm of the adenylate cyclase cascade can be increased by increasing total levels of adenylate cyclase in the genetic background of NG108-15 cells.

Full Text

The Full Text of this article is available as a PDF (396.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adie E. J., Milligan G. Agonist regulation of cellular Gs alpha-subunit levels in neuroblastoma x glioma hybrid NG108-15 cells transfected to express different levels of the human beta 2 adrenoceptor. Biochem J. 1994 Jun 15;300(Pt 3):709–715. doi: 10.1042/bj3000709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adie E. J., Milligan G. Regulation of basal adenylate cyclase activity in neuroblastoma x glioma hybrid, NG108-15, cells transfected to express the human beta 2 adrenoceptor: evidence for empty receptor stimulation of the adenylate cyclase cascade. Biochem J. 1994 Nov 1;303(Pt 3):803–808. doi: 10.1042/bj3030803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alousi A. A., Jasper J. R., Insel P. A., Motulsky H. J. Stoichiometry of receptor-Gs-adenylate cyclase interactions. FASEB J. 1991 Jun;5(9):2300–2303. doi: 10.1096/fasebj.5.9.1650314. [DOI] [PubMed] [Google Scholar]
  4. Appel N. M., Robbins J. D., De Souza E. B., Seamon K. B. [125I]-labeled forskolin analogs which discriminate adenylyl cyclase and a glucose transporter: pharmacological characterization and localization of binding sites in rat brain by in vitro receptor autoradiography. J Pharmacol Exp Ther. 1992 Dec;263(3):1415–1423. [PubMed] [Google Scholar]
  5. Barber R. Forskolin binding to intact S49 lymphoma cells. Second Messengers Phosphoproteins. 1988;12(1):59–71. [PubMed] [Google Scholar]
  6. Chen J., DeVivo M., Dingus J., Harry A., Li J., Sui J., Carty D. J., Blank J. L., Exton J. H., Stoffel R. H. A region of adenylyl cyclase 2 critical for regulation by G protein beta gamma subunits. Science. 1995 May 26;268(5214):1166–1169. doi: 10.1126/science.7761832. [DOI] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. DeBlasi A., O'Reilly K., Motulsky H. J. Calculating receptor number from binding experiments using same compound as radioligand and competitor. Trends Pharmacol Sci. 1989 Jun;10(6):227–229. doi: 10.1016/0165-6147(89)90266-6. [DOI] [PubMed] [Google Scholar]
  9. Feinstein P. G., Schrader K. A., Bakalyar H. A., Tang W. J., Krupinski J., Gilman A. G., Reed R. R. Molecular cloning and characterization of a Ca2+/calmodulin-insensitive adenylyl cyclase from rat brain. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10173–10177. doi: 10.1073/pnas.88.22.10173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gaudin C., Ishikawa Y., Wight D. C., Mahdavi V., Nadal-Ginard B., Wagner T. E., Vatner D. E., Homcy C. J. Overexpression of Gs alpha protein in the hearts of transgenic mice. J Clin Invest. 1995 Apr;95(4):1676–1683. doi: 10.1172/JCI117843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Graeser D., Neubig R. R. Compartmentation of receptors and guanine nucleotide-binding proteins in NG108-15 cells: lack of cross-talk in agonist binding among the alpha 2-adrenergic, muscarinic, and opiate receptors. Mol Pharmacol. 1993 Mar;43(3):434–443. [PubMed] [Google Scholar]
  12. Gunning P., Leavitt J., Muscat G., Ng S. Y., Kedes L. A human beta-actin expression vector system directs high-level accumulation of antisense transcripts. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4831–4835. doi: 10.1073/pnas.84.14.4831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jacobowitz O., Iyengar R. Phorbol ester-induced stimulation and phosphorylation of adenylyl cyclase 2. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10630–10634. doi: 10.1073/pnas.91.22.10630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnson R. A., Salomon Y. Assay of adenylyl cyclase catalytic activity. Methods Enzymol. 1991;195:3–21. doi: 10.1016/0076-6879(91)95150-i. [DOI] [PubMed] [Google Scholar]
  15. Kim G. D., Adie E. J., Milligan G. Quantitative stoichiometry of the proteins of the stimulatory arm of the adenylyl cyclase cascade in neuroblastoma x glioma hybrid, NG108-15 cells. Eur J Biochem. 1994 Jan 15;219(1-2):135–143. doi: 10.1111/j.1432-1033.1994.tb19923.x. [DOI] [PubMed] [Google Scholar]
  16. Kim G. D., Carr I. C., Milligan G. Detection and analysis of agonist-induced formation of the complex of the stimulatory guanine nucleotide-binding protein with adenylate cyclase in intact wild-type and beta 2-adrenoceptor-expressing NG108-15 cells. Biochem J. 1995 May 15;308(Pt 1):275–281. doi: 10.1042/bj3080275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Koch W. J., Rockman H. A., Samama P., Hamilton R. A., Bond R. A., Milano C. A., Lefkowitz R. J. Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. Science. 1995 Jun 2;268(5215):1350–1353. doi: 10.1126/science.7761854. [DOI] [PubMed] [Google Scholar]
  18. Laurenza A., Sutkowski E. M., Seamon K. B. Forskolin: a specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action? Trends Pharmacol Sci. 1989 Nov;10(11):442–447. doi: 10.1016/S0165-6147(89)80008-2. [DOI] [PubMed] [Google Scholar]
  19. Lustig K. D., Conklin B. R., Herzmark P., Taussig R., Bourne H. R. Type II adenylylcyclase integrates coincident signals from Gs, Gi, and Gq. J Biol Chem. 1993 Jul 5;268(19):13900–13905. [PubMed] [Google Scholar]
  20. MacEwan D. J., Kim G. D., Milligan G. Analysis of the role of receptor number in defining the intrinsic activity and potency of partial agonists in neuroblastoma x glioma hybrid NG108-15 cells transfected to express differing levels of the human beta 2-adrenoceptor. Mol Pharmacol. 1995 Aug;48(2):316–325. [PubMed] [Google Scholar]
  21. Milano C. A., Allen L. F., Rockman H. A., Dolber P. C., McMinn T. R., Chien K. R., Johnson T. D., Bond R. A., Lefkowitz R. J. Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. Science. 1994 Apr 22;264(5158):582–586. doi: 10.1126/science.8160017. [DOI] [PubMed] [Google Scholar]
  22. Milligan G. Foetal-calf serum stimulates a pertussis-toxin-sensitive high-affinity GTPase activity in rat glioma C6 BU1 cells. Biochem J. 1987 Jul 15;245(2):501–505. doi: 10.1042/bj2450501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Milligan G., Streaty R. A., Gierschik P., Spiegel A. M., Klee W. A. Development of opiate receptors and GTP-binding regulatory proteins in neonatal rat brain. J Biol Chem. 1987 Jun 25;262(18):8626–8630. [PubMed] [Google Scholar]
  24. Milligan G., Unson C. G. Persistent activation of the alpha subunit of Gs promotes its removal from the plasma membrane. Biochem J. 1989 Jun 15;260(3):837–841. doi: 10.1042/bj2600837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mullaney I., Milligan G. Equivalent regulation of wild type and an epitope-tagged variant of Gs alpha by the IP prostanoid receptor following expression in neuroblastoma x glioma hybrid, NG108-15, cells. FEBS Lett. 1994 Oct 24;353(3):231–234. doi: 10.1016/0014-5793(94)01043-9. [DOI] [PubMed] [Google Scholar]
  26. Neubig R. R. Membrane organization in G-protein mechanisms. FASEB J. 1994 Sep;8(12):939–946. doi: 10.1096/fasebj.8.12.8088459. [DOI] [PubMed] [Google Scholar]
  27. Pieroni J. P., Harry A., Chen J., Jacobowitz O., Magnusson R. P., Iyengar R. Distinct characteristics of the basal activities of adenylyl cyclases 2 and 6. J Biol Chem. 1995 Sep 8;270(36):21368–21373. doi: 10.1074/jbc.270.36.21368. [DOI] [PubMed] [Google Scholar]
  28. Pieroni J. P., Jacobowitz O., Chen J., Iyengar R. Signal recognition and integration by Gs-stimulated adenylyl cyclases. Curr Opin Neurobiol. 1993 Jun;3(3):345–351. doi: 10.1016/0959-4388(93)90127-k. [DOI] [PubMed] [Google Scholar]
  29. Premont R. T., Inglese J., Lefkowitz R. J. Protein kinases that phosphorylate activated G protein-coupled receptors. FASEB J. 1995 Feb;9(2):175–182. doi: 10.1096/fasebj.9.2.7781920. [DOI] [PubMed] [Google Scholar]
  30. Stryer L., Bourne H. R. G proteins: a family of signal transducers. Annu Rev Cell Biol. 1986;2:391–419. doi: 10.1146/annurev.cb.02.110186.002135. [DOI] [PubMed] [Google Scholar]
  31. Taussig R., Gilman A. G. Mammalian membrane-bound adenylyl cyclases. J Biol Chem. 1995 Jan 6;270(1):1–4. doi: 10.1074/jbc.270.1.1. [DOI] [PubMed] [Google Scholar]
  32. Tsu R. C., Allen R. A., Wong Y. H. Stimulation of type II adenylyl cyclase by chemoattractant formyl peptide and C5a receptors. Mol Pharmacol. 1995 Apr;47(4):835–841. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES