Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Sep 15;318(Pt 3):1057–1063. doi: 10.1042/bj3181057

Inhibition of hormone-sensitive lipase gene expression by cAMP and phorbol esters in 3T3-F442A and BFC-1 adipocytes.

E Plée-Gautier 1, J Grober 1, E Duplus 1, D Langin 1, C Forest 1
PMCID: PMC1217723  PMID: 8836156

Abstract

Hormone-sensitive lipase (HSL) catalyses the rate-limiting step in adipocyte lipolysis. Short-term hormonal regulation of HSL activity is well characterized, whereas little is known about the control of HSL gene expression. We have measured HSL mRNA content of 3T3-F442A and BFC-1 adipocytes in response to the cAMP analogue 8-(4-chlorophenylthio)-cAMP (8-CPT-cAMP) and to the phorbol ester phorbol 12-myristate 13-acetate (PMA) by Northern blot, using a specific mouse cDNA fragment. Treatment of the cells for 12 or 6 h with, respectively, 0.5 mM 8-CPT-cAMP or 1 microM PMA produced a maximal decrease of about 60% in HSL mRNA. These effects were unaffected by the protein-synthesis inhibitor anisomycin, suggesting that cAMP and PMA actions were direct. The reduction in HSL mRNA was accompanied by a reduction in HSL total activity. The intracellular routes that cAMP and PMA follow for inducing such an effect seemed clearly independent. (i) After desensitization of the protein kinase C regulation pathway by a 24 h treatment of the cells with 1 microM PMA, PMA action was abolished whereas cAMP was still fully active. (ii) Treatment with saturating concentrations of both agents produced an additive effect. (iii) The synthetic glucocorticoid dexamethasone had no proper effect on HSL gene expression but potentiated cAMP action without affecting PMA action. cAMP inhibitory action on HSL is unexpected. Indeed, the second messenger of catecholamines is the main activator of HSL by phosphorylation. We envision that a long-term cAMP treatment of adipocytes induces a counter-regulatory process that reduces HSL content and, ultimately, limits fatty acid depletion from stored triacylglycerols.

Full Text

The Full Text of this article is available as a PDF (437.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abumrad N. A., Forest C. C., Regen D. M., Sanders S. Increase in membrane uptake of long-chain fatty acids early during preadipocyte differentiation. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6008–6012. doi: 10.1073/pnas.88.14.6008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Antras-Ferry J., Robin P., Robin D., Forest C. Fatty acids and fibrates are potent inducers of transcription of the phosphenolpyruvate carboxykinase gene in adipocytes. Eur J Biochem. 1995 Dec 1;234(2):390–396. doi: 10.1111/j.1432-1033.1995.390_b.x. [DOI] [PubMed] [Google Scholar]
  3. Beale E. G., Chrapkiewicz N. B., Scoble H. A., Metz R. J., Quick D. P., Noble R. L., Donelson J. E., Biemann K., Granner D. K. Rat hepatic cytosolic phosphoenolpyruvate carboxykinase (GTP). Structures of the protein, messenger RNA, and gene. J Biol Chem. 1985 Sep 5;260(19):10748–10760. [PubMed] [Google Scholar]
  4. Belfrage P., Jergil B., Strålfors P., Tornqvist H. Hormone-sensitive lipase of rat adipose tissue: identification and some properties of the enzyme protein. FEBS Lett. 1977 Mar 15;75(1):259–264. doi: 10.1016/0014-5793(77)80099-9. [DOI] [PubMed] [Google Scholar]
  5. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Cornelius P., MacDougald O. A., Lane M. D. Regulation of adipocyte development. Annu Rev Nutr. 1994;14:99–129. doi: 10.1146/annurev.nu.14.070194.000531. [DOI] [PubMed] [Google Scholar]
  8. Egan J. J., Greenberg A. S., Chang M. K., Wek S. A., Moos M. C., Jr, Londos C. Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8537–8541. doi: 10.1073/pnas.89.18.8537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elks M. L., Manganiello V. C., Vaughan M. Effect of dexamethasone on adenosine 3',5'-monophosphate content and phosphodiesterase activities in 3T3-L1 adipocytes. Endocrinology. 1984 Oct;115(4):1350–1356. doi: 10.1210/endo-115-4-1350. [DOI] [PubMed] [Google Scholar]
  10. Elks M. L., Manganiello V. C., Vaughan M. Hormone-sensitive particulate cAMP phosphodiesterase activity in 3T3-L1 adipocytes. Regulation of responsiveness by dexamethasone. J Biol Chem. 1983 Jul 25;258(14):8582–8587. [PubMed] [Google Scholar]
  11. Fain J. N. Effect of dibutyryl-3',5'-AMP, theophylline and norepinephrine on lipolytic action of growth hormone and glucocorticoid in white fat cells. Endocrinology. 1968 Apr;82(4):825–830. doi: 10.1210/endo-82-4-825. [DOI] [PubMed] [Google Scholar]
  12. Fain J. N., Kovacev V. P., Scow R. O. Effect of growth hormone and dexamethasone on lipolysis and metabolism in isolated fat cells of the rat. J Biol Chem. 1965 Sep;240(9):3522–3529. [PubMed] [Google Scholar]
  13. Forest C., Doglio A., Ricquier D., Ailhaud G. A preadipocyte clonal line from mouse brown adipose tissue. Short- and long-term responses to insulin and beta-adrenergics. Exp Cell Res. 1987 Jan;168(1):218–232. doi: 10.1016/0014-4827(87)90430-7. [DOI] [PubMed] [Google Scholar]
  14. Franckhauser S., Antras-Ferry J., Robin P., Robin D., Granner D. K., Forest C. Expression of the phosphoenolpyruvate carboxykinase gene in 3T3-F442A adipose cells: opposite effects of dexamethasone and isoprenaline on transcription. Biochem J. 1995 Jan 1;305(Pt 1):65–71. doi: 10.1042/bj3050065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fredrikson G., Strålfors P., Nilsson N. O., Belfrage P. Hormone-sensitive lipase from adipose tissue of rat. Methods Enzymol. 1981;71(Pt 100):636–646. doi: 10.1016/0076-6879(81)71076-0. [DOI] [PubMed] [Google Scholar]
  16. Fève B., Baude B., Krief S., Strosberg A. D., Pairault J., Emorine L. J. Inhibition by dexamethasone of beta 3-adrenergic receptor responsiveness in 3T3-F442A adipocytes. Evidence for a transcriptional mechanism. J Biol Chem. 1992 Aug 5;267(22):15909–15915. [PubMed] [Google Scholar]
  17. Fève B., Emorine L. J., Briend-Sutren M. M., Lasnier F., Strosberg A. D., Pairault J. Differential regulation of beta 1- and beta 2-adrenergic receptor protein and mRNA levels by glucocorticoids during 3T3-F442A adipose differentiation. J Biol Chem. 1990 Sep 25;265(27):16343–16349. [PubMed] [Google Scholar]
  18. Fève B., Piétri-Rouxel F., el Hadri K., Drumare M. F., Strosberg A. D. Long term phorbol ester treatment down-regulates the beta 3-adrenergic receptor in 3T3-F442A adipocytes. J Biol Chem. 1995 May 5;270(18):10952–10959. doi: 10.1074/jbc.270.18.10952. [DOI] [PubMed] [Google Scholar]
  19. Gil G., Goldstein J. L., Slaughter C. A., Brown M. S. Cytoplasmic 3-hydroxy-3-methylglutaryl coenzyme A synthase from the hamster. I. Isolation and sequencing of a full-length cDNA. J Biol Chem. 1986 Mar 15;261(8):3710–3716. [PubMed] [Google Scholar]
  20. Green H., Kehinde O. Spontaneous heritable changes leading to increased adipose conversion in 3T3 cells. Cell. 1976 Jan;7(1):105–113. doi: 10.1016/0092-8674(76)90260-9. [DOI] [PubMed] [Google Scholar]
  21. Guest S. J., Hadcock J. R., Watkins D. C., Malbon C. C. Beta 1- and beta 2-adrenergic receptor expression in differentiating 3T3-L1 cells. Independent regulation at the level of mRNA. J Biol Chem. 1990 Apr 5;265(10):5370–5375. [PubMed] [Google Scholar]
  22. Holm C., Kirchgessner T. G., Svenson K. L., Fredrikson G., Nilsson S., Miller C. G., Shively J. E., Heinzmann C., Sparkes R. S., Mohandas T. Hormone-sensitive lipase: sequence, expression, and chromosomal localization to 19 cent-q13.3. Science. 1988 Sep 16;241(4872):1503–1506. doi: 10.1126/science.3420405. [DOI] [PubMed] [Google Scholar]
  23. Jepson C. A., Yeaman S. J. Inhibition of hormone-sensitive lipase by intermediary lipid metabolites. FEBS Lett. 1992 Sep 28;310(2):197–200. doi: 10.1016/0014-5793(92)81328-j. [DOI] [PubMed] [Google Scholar]
  24. Kawamura M., Jensen D. F., Wancewicz E. V., Joy L. L., Khoo J. C., Steinberg D. Hormone-sensitive lipase in differentiated 3T3-L1 cells and its activation by cyclic AMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1981 Feb;78(2):732–736. doi: 10.1073/pnas.78.2.732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Khoo J. C., Steinberg D. Reversible protein kinase activation of hormone-sensitive lipase from chicken adipose tissue. J Lipid Res. 1974 Nov;15(6):602–610. [PubMed] [Google Scholar]
  26. Kraemer F. B., Tavangar K., Hoffman A. R. Developmental regulation of hormone-sensitive lipase mRNA in the rat: changes in steroidogenic tissues. J Lipid Res. 1991 Aug;32(8):1303–1310. [PubMed] [Google Scholar]
  27. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  28. Langin D., Laurell H., Holst L. S., Belfrage P., Holm C. Gene organization and primary structure of human hormone-sensitive lipase: possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4897–4901. doi: 10.1073/pnas.90.11.4897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Li Z., Sumida M., Birchbauer A., Schotz M. C., Reue K. Isolation and characterization of the gene for mouse hormone-sensitive lipase. Genomics. 1994 Nov 15;24(2):259–265. doi: 10.1006/geno.1994.1614. [DOI] [PubMed] [Google Scholar]
  30. Martin-Hidalgo A., Holm C., Belfrage P., Schotz M. C., Herrera E. Lipoprotein lipase and hormone-sensitive lipase activity and mRNA in rat adipose tissue during pregnancy. Am J Physiol. 1994 Jun;266(6 Pt 1):E930–E935. doi: 10.1152/ajpendo.1994.266.6.E930. [DOI] [PubMed] [Google Scholar]
  31. Ong J. M., Kirchgessner T. G., Schotz M. C., Kern P. A. Insulin increases the synthetic rate and messenger RNA level of lipoprotein lipase in isolated rat adipocytes. J Biol Chem. 1988 Sep 15;263(26):12933–12938. [PubMed] [Google Scholar]
  32. Postic C., Leturque A., Rencurel F., Printz R. L., Forest C., Granner D. K., Girard J. The effects of hyperinsulinemia and hyperglycemia on GLUT4 and hexokinase II mRNA and protein in rat skeletal muscle and adipose tissue. Diabetes. 1993 Jun;42(6):922–929. doi: 10.2337/diab.42.6.922. [DOI] [PubMed] [Google Scholar]
  33. Rozengurt E., Murray M., Zachary I., Collins M. Protein kinase C activation enhances cAMP accumulation in Swiss 3T3 cells: inhibition by pertussis toxin. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2282–2286. doi: 10.1073/pnas.84.8.2282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. STRAND O., VAUGHAN M., STEINBERG D. RAT ADIPOSE TISSUE LIPASES: HORMONE-SENSITIVE LIPASE ACTIVITY AGAINST TRIGLYCERIDES COMPARED WITH ACTIVITY AGAINST LOWER GLYCERIDES. J Lipid Res. 1964 Oct;5:554–562. [PubMed] [Google Scholar]
  35. Slavin B. G., Ong J. M., Kern P. A. Hormonal regulation of hormone-sensitive lipase activity and mRNA levels in isolated rat adipocytes. J Lipid Res. 1994 Sep;35(9):1535–1541. [PubMed] [Google Scholar]
  36. Strålfors P., Belfrage P. Phosphorylation of hormone-sensitive lipase by cyclic AMP-dependent protein kinase. J Biol Chem. 1983 Dec 25;258(24):15146–15152. [PubMed] [Google Scholar]
  37. Strålfors P., Björgell P., Belfrage P. Hormonal regulation of hormone-sensitive lipase in intact adipocytes: identification of phosphorylated sites and effects on the phosphorylation by lipolytic hormones and insulin. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3317–3321. doi: 10.1073/pnas.81.11.3317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sztalryd C., Kraemer F. B. Regulation of hormone-sensitive lipase during fasting. Am J Physiol. 1994 Feb;266(2 Pt 1):E179–E185. doi: 10.1152/ajpendo.1994.266.2.E179. [DOI] [PubMed] [Google Scholar]
  39. Yang H., McLeese J., Weisbart M., Dionne J. L., Lemaire I., Aubin R. A. Simplified high throughput protocol for northern hybridization. Nucleic Acids Res. 1993 Jul 11;21(14):3337–3338. doi: 10.1093/nar/21.14.3337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zovich D. C., Orologa A., Okuno M., Kong L. W., Talmage D. A., Piantedosi R., Goodman D. S., Blaner W. S. Differentiation-dependent expression of retinoid-binding proteins in BFC-1 beta adipocytes. J Biol Chem. 1992 Jul 15;267(20):13884–13889. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES