Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Oct 1;319(Pt 1):49–57. doi: 10.1042/bj3190049

Purification and biochemical characterization of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate-sensitive L-glutamate receptors of pig brain.

Y C Chang 1, T Y Wu 1, B F Li 1, L H Gao 1, C I Liu 1, C L Wu 1
PMCID: PMC1217734  PMID: 8870648

Abstract

Two preparations of glutamate receptors were purified from the synaptic junctions of pig brain by a combination of detergent solubilization, anion-exchange chromatography, wheat-germ agglutinin affinity chromatography and sedimentation through sucrose gradients. These preparations were enriched in specific L-[3H]glutamate binding activity (> 5000 pmol of glutamate binding sites/mg of protein), and the rank order of ligand affinity for binding to these preparations was: quisqualate > 6-cyano-7- nitroquinoxaline-2,3-dione > alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid (AMPA) > L-glutamate > kainate > > N-methyl-D-aspartate approximately L-2-amino-4-phosphonobutyrate. SDS/PAGE analysis revealed that more than 80% of the protein in either of these preparations appeared as a single protein band of 106 kDa. Two-dimensional gel electrophoresis further revealed that these 106 kDa proteins consisted of a series of acidic proteins which were recognized by antibodies against rat AMPA receptor subunits. These 106 kDa proteins were also recognized by wheatgerm agglutinin and concanavalin A; in addition, peptide N-glycosidase F treatment of these preparations decreased their size to 99 kDa. Our results suggest that the putative glutamate receptors isolated here are likely to belong to the AMPA subtype of glutamate receptors in pig brain. Using the purification procedure reported here, 5 micrograms of AMPA receptor proteins can be isolated from 250 g of pig brain tissue.

Full Text

The Full Text of this article is available as a PDF (619.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agnew W. S., Levinson S. R., Brabson J. S., Raftery M. A. Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2606–2610. doi: 10.1073/pnas.75.6.2606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett J. A., Dingledine R. Topology profile for a glutamate receptor: three transmembrane domains and a channel-lining reentrant membrane loop. Neuron. 1995 Feb;14(2):373–384. doi: 10.1016/0896-6273(95)90293-7. [DOI] [PubMed] [Google Scholar]
  3. Blackstone C. D., Moss S. J., Martin L. J., Levey A. I., Price D. L., Huganir R. L. Biochemical characterization and localization of a non-N-methyl-D-aspartate glutamate receptor in rat brain. J Neurochem. 1992 Mar;58(3):1118–1126. doi: 10.1111/j.1471-4159.1992.tb09370.x. [DOI] [PubMed] [Google Scholar]
  4. Brose N., Huntley G. W., Stern-Bach Y., Sharma G., Morrison J. H., Heinemann S. F. Differential assembly of coexpressed glutamate receptor subunits in neurons of rat cerebral cortex. J Biol Chem. 1994 Jun 17;269(24):16780–16784. [PubMed] [Google Scholar]
  5. Burnashev N., Monyer H., Seeburg P. H., Sakmann B. Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron. 1992 Jan;8(1):189–198. doi: 10.1016/0896-6273(92)90120-3. [DOI] [PubMed] [Google Scholar]
  6. Chang Y. C., Lin Y. H., Lee Y. H., Leng C. H. Solubilization, characterization, and partial purification of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-, quisqualate-, kainate-sensitive L-glutamate binding sites from porcine brain synaptic junctions. J Neurochem. 1991 Dec;57(6):1921–1926. doi: 10.1111/j.1471-4159.1991.tb06404.x. [DOI] [PubMed] [Google Scholar]
  7. Chen J. W., Cunningham M. D., Galton N., Michaelis E. K. Immune labeling and purification of a 71-kDa glutamate-binding protein from brain synaptic membranes. Possible relationship of this protein to physiologic glutamate receptors. J Biol Chem. 1988 Jan 5;263(1):417–426. [PubMed] [Google Scholar]
  8. Constantine-Paton M., Cline H. T., Debski E. Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annu Rev Neurosci. 1990;13:129–154. doi: 10.1146/annurev.ne.13.030190.001021. [DOI] [PubMed] [Google Scholar]
  9. Curtis B. M., Catterall W. A. Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry. 1984 May 8;23(10):2113–2118. doi: 10.1021/bi00305a001. [DOI] [PubMed] [Google Scholar]
  10. Dunbar B. S., Kimura H., Timmons T. M. Protein analysis using high-resolution two-dimensional polyacrylamide gel electrophoresis. Methods Enzymol. 1990;182:441–459. doi: 10.1016/0076-6879(90)82036-2. [DOI] [PubMed] [Google Scholar]
  11. Foster A. C., Mena E. E., Fagg G. E., Cotman C. W. Glutamate and aspartate binding sites are enriched in synaptic junctions isolated from rat brain. J Neurosci. 1981 Jun;1(6):620–625. doi: 10.1523/JNEUROSCI.01-06-00620.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gregor P., Eshhar N., Ortega A., Teichberg V. I. Isolation, immunochemical characterization and localization of the kainate sub-class of glutamate receptor from chick cerebellum. EMBO J. 1988 Sep;7(9):2673–2679. doi: 10.1002/j.1460-2075.1988.tb03120.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hampson D. R., Huie D., Wenthold R. J. Solubilization of kainic acid binding sites from rat brain. J Neurochem. 1987 Oct;49(4):1209–1215. doi: 10.1111/j.1471-4159.1987.tb10012.x. [DOI] [PubMed] [Google Scholar]
  14. Hampson D. R., Wenthold R. J. A kainic acid receptor from frog brain purified using domoic acid affinity chromatography. J Biol Chem. 1988 Feb 15;263(5):2500–2505. [PubMed] [Google Scholar]
  15. Henley J. M., Ambrosini A., Rodriguez-Ithurralde D., Sudan H., Brackley P., Kerry C., Mellor I., Abutidze K., Usherwood P. N., Barnard E. A. Purified unitary kainate/alpha-amino-3-hydroxy-5-methylisooxazole-propionate (AMPA) and kainate/AMPA/N-methyl-D-aspartate receptors with interchangeable subunits. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4806–4810. doi: 10.1073/pnas.89.11.4806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hollmann M., Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci. 1994;17:31–108. doi: 10.1146/annurev.ne.17.030194.000335. [DOI] [PubMed] [Google Scholar]
  17. Hollmann M., Maron C., Heinemann S. N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron. 1994 Dec;13(6):1331–1343. doi: 10.1016/0896-6273(94)90419-7. [DOI] [PubMed] [Google Scholar]
  18. Hullebroeck M. F., Hampson D. R. Characterization of the oligosaccharide side chains on kainate binding proteins and AMPA receptors. Brain Res. 1992 Sep 11;590(1-2):187–192. doi: 10.1016/0006-8993(92)91094-u. [DOI] [PubMed] [Google Scholar]
  19. Hunter C., Wheaton K. D., Wenthold R. J. Solubilization and partial purification of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid binding sites from rat brain. J Neurochem. 1990 Jan;54(1):118–125. doi: 10.1111/j.1471-4159.1990.tb13290.x. [DOI] [PubMed] [Google Scholar]
  20. Kawamoto S., Hattori S., Sakimura K., Mishina M., Okuda K. N-linked glycosylation of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-selective glutamate receptor channel alpha 2 subunit is essential for the acquisition of ligand-binding activity. J Neurochem. 1995 Mar;64(3):1258–1266. doi: 10.1046/j.1471-4159.1995.64031258.x. [DOI] [PubMed] [Google Scholar]
  21. Kuonen D. R., Roberts P. J. Solubilisation of a glutamate binding protein from rat brain. J Neurochem. 1987 Jul;49(1):272–281. doi: 10.1111/j.1471-4159.1987.tb03426.x. [DOI] [PubMed] [Google Scholar]
  22. Köhler M., Kornau H. C., Seeburg P. H. The organization of the gene for the functionally dominant alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit GluR-B. J Biol Chem. 1994 Jul 1;269(26):17367–17370. [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Liman E. R., Knapp A. G., Dowling J. E. Enhancement of kainate-gated currents in retinal horizontal cells by cyclic AMP-dependent protein kinase. Brain Res. 1989 Mar 6;481(2):399–402. doi: 10.1016/0006-8993(89)90822-6. [DOI] [PubMed] [Google Scholar]
  26. Ly A. M., Michaelis E. K. Solubilization, partial purification, and reconstitution of glutamate- and N-methyl-D-aspartate-activated cation channels from brain synaptic membranes. Biochemistry. 1991 Apr 30;30(17):4307–4316. doi: 10.1021/bi00231a029. [DOI] [PubMed] [Google Scholar]
  27. Martin L. J., Blackstone C. D., Levey A. I., Huganir R. L., Price D. L. Cellular localizations of AMPA glutamate receptors within the basal forebrain magnocellular complex of rat and monkey. J Neurosci. 1993 May;13(5):2249–2263. doi: 10.1523/JNEUROSCI.13-05-02249.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mayer M. L., Westbrook G. L. The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol. 1987;28(3):197–276. doi: 10.1016/0301-0082(87)90011-6. [DOI] [PubMed] [Google Scholar]
  29. Michaelis E. K., Chittenden W. L., Johnson B. E., Galton N., Decedue C. Purification, biochemical characterization, binding activity, and selectivity of a glutamate binding protein from bovine brain. J Neurochem. 1984 Feb;42(2):397–406. doi: 10.1111/j.1471-4159.1984.tb02691.x. [DOI] [PubMed] [Google Scholar]
  30. Michaelis E. K., Michaelis M. L., Stormann T. M., Chittenden W. L., Grubbs R. D. Purification and molecular characterization of the brain synaptic membrane glutamate-binding protein. J Neurochem. 1983 Jun;40(6):1742–1753. doi: 10.1111/j.1471-4159.1983.tb08150.x. [DOI] [PubMed] [Google Scholar]
  31. Michaelis E. K. Partial purification and characterization of a glutamate-binding membrane glycoprotein from rat brain. Biochem Biophys Res Commun. 1975 Aug 4;65(3):1004–1012. doi: 10.1016/s0006-291x(75)80485-2. [DOI] [PubMed] [Google Scholar]
  32. Monaghan D. T., Bridges R. J., Cotman C. W. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol. 1989;29:365–402. doi: 10.1146/annurev.pa.29.040189.002053. [DOI] [PubMed] [Google Scholar]
  33. Moss S. J., Blackstone C. D., Huganir R. L. Phosphorylation of recombinant non-NMDA glutamate receptors on serine and tyrosine residues. Neurochem Res. 1993 Jan;18(1):105–110. doi: 10.1007/BF00966929. [DOI] [PubMed] [Google Scholar]
  34. Nakanishi N., Shneider N. A., Axel R. A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron. 1990 Nov;5(5):569–581. doi: 10.1016/0896-6273(90)90212-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nakanishi S. Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron. 1994 Nov;13(5):1031–1037. doi: 10.1016/0896-6273(94)90043-4. [DOI] [PubMed] [Google Scholar]
  36. Petralia R. S., Wang Y. X., Wenthold R. J. The NMDA receptor subunits NR2A and NR2B show histological and ultrastructural localization patterns similar to those of NR1. J Neurosci. 1994 Oct;14(10):6102–6120. doi: 10.1523/JNEUROSCI.14-10-06102.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Petralia R. S., Yokotani N., Wenthold R. J. Light and electron microscope distribution of the NMDA receptor subunit NMDAR1 in the rat nervous system using a selective anti-peptide antibody. J Neurosci. 1994 Feb;14(2):667–696. doi: 10.1523/JNEUROSCI.14-02-00667.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Raymond L. A., Blackstone C. D., Huganir R. L. Phosphorylation of amino acid neurotransmitter receptors in synaptic plasticity. Trends Neurosci. 1993 Apr;16(4):147–153. doi: 10.1016/0166-2236(93)90123-4. [DOI] [PubMed] [Google Scholar]
  39. Roche K. W., Tingley W. G., Huganir R. L. Glutamate receptor phosphorylation and synaptic plasticity. Curr Opin Neurobiol. 1994 Jun;4(3):383–388. doi: 10.1016/0959-4388(94)90100-7. [DOI] [PubMed] [Google Scholar]
  40. Seeburg P. H. The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci. 1993 Sep;16(9):359–365. doi: 10.1016/0166-2236(93)90093-2. [DOI] [PubMed] [Google Scholar]
  41. Seeburg P. H. The role of RNA editing in controlling glutamate receptor channel properties. J Neurochem. 1996 Jan;66(1):1–5. doi: 10.1046/j.1471-4159.1996.66010001.x. [DOI] [PubMed] [Google Scholar]
  42. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  43. Stern-Bach Y., Bettler B., Hartley M., Sheppard P. O., O'Hara P. J., Heinemann S. F. Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron. 1994 Dec;13(6):1345–1357. doi: 10.1016/0896-6273(94)90420-0. [DOI] [PubMed] [Google Scholar]
  44. Taverna F. A., Wang L. Y., MacDonald J. F., Hampson D. R. A transmembrane model for an ionotropic glutamate receptor predicted on the basis of the location of asparagine-linked oligosaccharides. J Biol Chem. 1994 May 13;269(19):14159–14164. [PubMed] [Google Scholar]
  45. Watkins J. C., Krogsgaard-Larsen P., Honoré T. Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol Sci. 1990 Jan;11(1):25–33. doi: 10.1016/0165-6147(90)90038-a. [DOI] [PubMed] [Google Scholar]
  46. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  47. Wenthold R. J., Trumpy V. A., Zhu W. S., Petralia R. S. Biochemical and assembly properties of GluR6 and KA2, two members of the kainate receptor family, determined with subunit-specific antibodies. J Biol Chem. 1994 Jan 14;269(2):1332–1339. [PubMed] [Google Scholar]
  48. Wenthold R. J., Yokotani N., Doi K., Wada K. Immunochemical characterization of the non-NMDA glutamate receptor using subunit-specific antibodies. Evidence for a hetero-oligomeric structure in rat brain. J Biol Chem. 1992 Jan 5;267(1):501–507. [PubMed] [Google Scholar]
  49. Wo Z. G., Oswald R. E. Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci. 1995 Apr;18(4):161–168. doi: 10.1016/0166-2236(95)93895-5. [DOI] [PubMed] [Google Scholar]
  50. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]
  51. Wu T. Y., Chang Y. C. Hydrodynamic and pharmacological characterization of putative alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate-sensitive L-glutamate receptors solubilized from pig brain. Biochem J. 1994 Jun 1;300(Pt 2):365–371. doi: 10.1042/bj3000365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Ziegra C. J., Willard J. M., Oswald R. E. Coupling of a purified goldfish brain kainate receptor with a pertussis toxin-sensitive G protein. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4134–4138. doi: 10.1073/pnas.89.9.4134. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES