Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Oct 1;319(Pt 1):99–102. doi: 10.1042/bj3190099

Isolation and characterization of the gene encoding an aminopeptidase involved in the selective toxicity of ascamycin toward Xanthomonas campestris pv. citri.

T Sudo 1, K Shinohara 1, N Dohmae 1, K Takio 1, R Usami 1, K Horikoshi 1, H Osada 1
PMCID: PMC1217740  PMID: 8870654

Abstract

An aminopeptidase gene named XAP has been isolated from Xanthomonas campestris pv. citri, a plant pathogenic bacterium. The bacterium is one of the rare micro-organisms susceptible to ascamycin, an aminoacyl nucleoside antibiotic that inhibits protein synthesis. Sequence analysis reveals that the gene encodes a 311 amino acid protein with a calculated molecular mass of 35134 Da and approx. 50% identity for amino acids to the proline iminopeptidase from Neisseria gonorrhoeae. The XAP gene product, Xap, expressed in Escherichia coli has proline iminopeptidase activity as well as ascamycin dealanylating activity in vitro.

Full Text

The Full Text of this article is available as a PDF (599.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebersold R. H., Leavitt J., Saavedra R. A., Hood L. E., Kent S. B. Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc Natl Acad Sci U S A. 1987 Oct;84(20):6970–6974. doi: 10.1073/pnas.84.20.6970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albertson N. H., Koomey M. Molecular cloning and characterization of a proline iminopeptidase gene from Neisseria gonorrhoeae. Mol Microbiol. 1993 Sep;9(6):1203–1211. doi: 10.1111/j.1365-2958.1993.tb01249.x. [DOI] [PubMed] [Google Scholar]
  3. Atlan D., Gilbert C., Blanc B., Portalier R. Cloning, sequencing and characterization of the pepIP gene encoding a proline iminopeptidase from Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397. Microbiology. 1994 Mar;140(Pt 3):527–535. doi: 10.1099/00221287-140-3-527. [DOI] [PubMed] [Google Scholar]
  4. Genin S., Boucher C. A. A superfamily of proteins involved in different secretion pathways in gram-negative bacteria: modular structure and specificity of the N-terminal domain. Mol Gen Genet. 1994 Apr;243(1):112–118. doi: 10.1007/BF00283883. [DOI] [PubMed] [Google Scholar]
  5. Gough C. L., Genin S., Lopes V., Boucher C. A. Homology between the HrpO protein of Pseudomonas solanacearum and bacterial proteins implicated in a signal peptide-independent secretion mechanism. Mol Gen Genet. 1993 Jun;239(3):378–392. doi: 10.1007/BF00276936. [DOI] [PubMed] [Google Scholar]
  6. Hu N. T., Hung M. N., Chiou S. J., Tang F., Chiang D. C., Huang H. Y., Wu C. Y. Cloning and characterization of a gene required for the secretion of extracellular enzymes across the outer membrane by Xanthomonas campestris pv. campestris. J Bacteriol. 1992 Apr;174(8):2679–2687. doi: 10.1128/jb.174.8.2679-2687.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Isono K., Uramoto M., Kusakabe H., Miyata N., Koyama T., Ubukata M., Sethi S. K., McCloskey J. A. Ascamycin and dealanylascamycin, nucleoside antibiotics from Streptomyces sp. J Antibiot (Tokyo) 1984 Jun;37(6):670–672. doi: 10.7164/antibiotics.37.670. [DOI] [PubMed] [Google Scholar]
  8. Kitazono A., Yoshimoto T., Tsuru D. Cloning, sequencing, and high expression of the proline iminopeptidase gene from Bacillus coagulans. J Bacteriol. 1992 Dec;174(24):7919–7925. doi: 10.1128/jb.174.24.7919-7925.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Lee C. C., Wu X. W., Gibbs R. A., Cook R. G., Muzny D. M., Caskey C. T. Generation of cDNA probes directed by amino acid sequence: cloning of urate oxidase. Science. 1988 Mar 11;239(4845):1288–1291. doi: 10.1126/science.3344434. [DOI] [PubMed] [Google Scholar]
  11. Osada H., Isono K. Mechanism of action and selective toxicity of ascamycin, a nucleoside antibiotic. Antimicrob Agents Chemother. 1985 Feb;27(2):230–233. doi: 10.1128/aac.27.2.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Osada H., Isono K. Occurrence of an ascamycin dealanylating enzyme, Xc-aminopeptidase, in mammalian cell membranes and susceptibility to ascamycin. J Antibiot (Tokyo) 1986 Feb;39(2):286–293. doi: 10.7164/antibiotics.39.286. [DOI] [PubMed] [Google Scholar]
  13. Osada H., Isono K. Purification and characterization of ascamycin-hydrolysing aminopeptidase from Xanthomonas citri. Biochem J. 1986 Jan 15;233(2):459–463. doi: 10.1042/bj2330459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Poquet I., Faucher D., Pugsley A. P. Stable periplasmic secretion intermediate in the general secretory pathway of Escherichia coli. EMBO J. 1993 Jan;12(1):271–278. doi: 10.1002/j.1460-2075.1993.tb05653.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Takahashi E., Beppu T. A new nucleosidic antibiotic AT-265. J Antibiot (Tokyo) 1982 Aug;35(8):939–947. doi: 10.7164/antibiotics.35.939. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES