Abstract
S100C is a member of the S100 family of EF-hand-type Ca(2+)-binding proteins which are thought to bind to and thereby regulate the activity of cellular target proteins in a Ca(2+)-dependent manner. An intracellular ligand for S100C is the Ca2+/phospholipid-binding protein annexin I and we show here that complex-formation is mediated through unique domains within S100C and annexin I. Using a proteolytically truncated annexin I derivative as well as a number of N-terminal annexin I peptides in liposome co-pelleting and ligand-blotting assays we map the S100C-binding site to the N-terminal 13 residues of annexin I. Similar analyses employing recombinantly expressed S100C mutants reveal that residues D91 to 194 in the unique C-terminal extension of this S100 protein are indispensable for annexin I binding. Interaction between S100C and an N-terminal annexin I peptide containing a tryptoplan at position 11 can also be monitored by fluorescence emission spectroscopy after tryptophan excitation. This analysis indicates that the local environment of the tryptophan in annexin I becomes less aqueous on S100C binding, suggesting a hydrophobic nature of the protein-protein interaction. Thus the structural basis of the annexin 1-S100C complex-formation probably resembles to a large extent that of the well-characterized annexin II-p11 interaction.
Full Text
The Full Text of this article is available as a PDF (401.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Becker T., Weber K., Johnsson N. Protein-protein recognition via short amphiphilic helices; a mutational analysis of the binding site of annexin II for p11. EMBO J. 1990 Dec;9(13):4207–4213. doi: 10.1002/j.1460-2075.1990.tb07868.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creutz C. E. The annexins and exocytosis. Science. 1992 Nov 6;258(5084):924–931. doi: 10.1126/science.1439804. [DOI] [PubMed] [Google Scholar]
- Drust D. S., Creutz C. E. Aggregation of chromaffin granules by calpactin at micromolar levels of calcium. Nature. 1988 Jan 7;331(6151):88–91. doi: 10.1038/331088a0. [DOI] [PubMed] [Google Scholar]
- Fava R. A., Cohen S. Isolation of a calcium-dependent 35-kilodalton substrate for the epidermal growth factor receptor/kinase from A-431 cells. J Biol Chem. 1984 Feb 25;259(4):2636–2645. [PubMed] [Google Scholar]
- Futter C. E., Felder S., Schlessinger J., Ullrich A., Hopkins C. R. Annexin I is phosphorylated in the multivesicular body during the processing of the epidermal growth factor receptor. J Cell Biol. 1993 Jan;120(1):77–83. doi: 10.1083/jcb.120.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerke V., Koch W., Thiel C. Primary structure and expression of the Xenopus laevis gene encoding annexin II. Gene. 1991 Aug 15;104(2):259–264. doi: 10.1016/0378-1119(91)90259-e. [DOI] [PubMed] [Google Scholar]
- Gerke V., Weber K. Calcium-dependent conformational changes in the 36-kDa subunit of intestinal protein I related to the cellular 36-kDa target of Rous sarcoma virus tyrosine kinase. J Biol Chem. 1985 Feb 10;260(3):1688–1695. [PubMed] [Google Scholar]
- Glenney J. R., Jr, Tack B., Powell M. A. Calpactins: two distinct Ca++-regulated phospholipid- and actin-binding proteins isolated from lung and placenta. J Cell Biol. 1987 Mar;104(3):503–511. doi: 10.1083/jcb.104.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gruenberg J., Emans N. Annexins in membrane traffic. Trends Cell Biol. 1993 Jul;3(7):224–227. doi: 10.1016/0962-8924(93)90116-i. [DOI] [PubMed] [Google Scholar]
- Haigler H. T., Schlaepfer D. D., Burgess W. H. Characterization of lipocortin I and an immunologically unrelated 33-kDa protein as epidermal growth factor receptor/kinase substrates and phospholipase A2 inhibitors. J Biol Chem. 1987 May 15;262(14):6921–6930. [PubMed] [Google Scholar]
- Ivanenkov V. V., Weber K., Gerke V. The expression of different annexins in the fish embryo is developmentally regulated. FEBS Lett. 1994 Sep 26;352(2):227–230. doi: 10.1016/0014-5793(94)00956-2. [DOI] [PubMed] [Google Scholar]
- Johnsson N., Marriott G., Weber K. p36, the major cytoplasmic substrate of src tyrosine protein kinase, binds to its p11 regulatory subunit via a short amino-terminal amphiphatic helix. EMBO J. 1988 Aug;7(8):2435–2442. doi: 10.1002/j.1460-2075.1988.tb03089.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jost M., Weber K., Gerke V. Annexin II contains two types of Ca(2+)-binding sites. Biochem J. 1994 Mar 15;298(Pt 3):553–559. doi: 10.1042/bj2980553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kube E., Becker T., Weber K., Gerke V. Protein-protein interaction studied by site-directed mutagenesis. Characterization of the annexin II-binding site on p11, a member of the S100 protein family. J Biol Chem. 1992 Jul 15;267(20):14175–14182. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Mailliard W. S., Haigler H. T., Schlaepfer D. D. Calcium-dependent binding of S100C to the N-terminal domain of annexin I. J Biol Chem. 1996 Jan 12;271(2):719–725. doi: 10.1074/jbc.271.2.719. [DOI] [PubMed] [Google Scholar]
- Moss S. E. Ion channels. Annexins taken to task. Nature. 1995 Nov 30;378(6556):446–447. doi: 10.1038/378446a0. [DOI] [PubMed] [Google Scholar]
- Naka M., Qing Z. X., Sasaki T., Kise H., Tawara I., Hamaguchi S., Tanaka T. Purification and characterization of a novel calcium-binding protein, S100C, from porcine heart. Biochim Biophys Acta. 1994 Sep 29;1223(3):348–353. doi: 10.1016/0167-4889(94)90094-9. [DOI] [PubMed] [Google Scholar]
- Ohta H., Sasaki T., Naka M., Hiraoka O., Miyamoto C., Furuichi Y., Tanaka T. Molecular cloning and expression of the cDNA coding for a new member of the S100 protein family from porcine cardiac muscle. FEBS Lett. 1991 Dec 16;295(1-3):93–96. doi: 10.1016/0014-5793(91)81393-m. [DOI] [PubMed] [Google Scholar]
- Potts B. C., Smith J., Akke M., Macke T. J., Okazaki K., Hidaka H., Case D. A., Chazin W. J. The structure of calcyclin reveals a novel homodimeric fold for S100 Ca(2+)-binding proteins. Nat Struct Biol. 1995 Sep;2(9):790–796. doi: 10.1038/nsb0995-790. [DOI] [PubMed] [Google Scholar]
- Powell M. A., Glenney J. R. Regulation of calpactin I phospholipid binding by calpactin I light-chain binding and phosphorylation by p60v-src. Biochem J. 1987 Oct 15;247(2):321–328. doi: 10.1042/bj2470321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raynal P., Pollard H. B. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta. 1994 Apr 5;1197(1):63–93. doi: 10.1016/0304-4157(94)90019-1. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schäfer B. W., Heizmann C. W. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci. 1996 Apr;21(4):134–140. doi: 10.1016/s0968-0004(96)80167-8. [DOI] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Thiel C., Osborn M., Gerke V. The tight association of the tyrosine kinase substrate annexin II with the submembranous cytoskeleton depends on intact p11- and Ca(2+)-binding sites. J Cell Sci. 1992 Nov;103(Pt 3):733–742. doi: 10.1242/jcs.103.3.733. [DOI] [PubMed] [Google Scholar]
- Tokumitsu H., Mizutani A., Hidaka H. Calcyclin-binding site located on the NH2-terminal domain of rabbit CAP-50 (annexin XI): functional expression of CAP-50 in Escherichia coli. Arch Biochem Biophys. 1993 Jun;303(2):302–306. doi: 10.1006/abbi.1993.1287. [DOI] [PubMed] [Google Scholar]
- Tokumitsu H., Mizutani A., Minami H., Kobayashi R., Hidaka H. A calcyclin-associated protein is a newly identified member of the Ca2+/phospholipid-binding proteins, annexin family. J Biol Chem. 1992 May 5;267(13):8919–8924. [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang W., Creutz C. E. Role of the amino-terminal domain in regulating interactions of annexin I with membranes: effects of amino-terminal truncation and mutagenesis of the phosphorylation sites. Biochemistry. 1994 Jan 11;33(1):275–282. doi: 10.1021/bi00167a036. [DOI] [PubMed] [Google Scholar]
- Watanabe M., Ando Y., Tokumitsu H., Hidaka H. Binding site of annexin XI on the calcyclin molecule. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1376–1382. doi: 10.1006/bbrc.1993.2405. [DOI] [PubMed] [Google Scholar]
- Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]
- Zokas L., Glenney J. R., Jr The calpactin light chain is tightly linked to the cytoskeletal form of calpactin I: studies using monoclonal antibodies to calpactin subunits. J Cell Biol. 1987 Nov;105(5):2111–2121. doi: 10.1083/jcb.105.5.2111. [DOI] [PMC free article] [PubMed] [Google Scholar]