Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Oct 1;319(Pt 1):143–148. doi: 10.1042/bj3190143

Theoretical studies on the control of oxidative phosphorylation in muscle mitochondria: application to mitochondrial deficiencies.

B Korzeniewski 1, J P Mazat 1
PMCID: PMC1217747  PMID: 8870661

Abstract

1. The dynamic model of oxidative phosphorylation developed previously for rat liver mitochondria incubated with succinate was adapted for muscle mitochondria respiring on pyruvate. We introduced the following changes considering: (1) a higher external ATP/ADP ratio and an ATP/ADP carrier less displaced from equilibrium; (2) a substrate dehydrogenation more sensitive to the NADH/NAD+ ratio; and (3) the respiratory chain, ATP synthase and phosphate carrier being more displaced from equilibrium. The experimental flux control coefficients already determined in state 3 for respiratory rate and ATP synthesis were used to adjust some parameters. This new oxidative phosphorylation model enabled us to simulate the whole titration curves obtained experimentally in state 3. These curves, which mimic the effect of mitochondrial complex deficiencies on oxidative phosphorylation, show a threshold effect, which is reproduced by the model. 2. the model was also used to simulate other physiological conditions such as (i) state 3.5, conditions in-between state 4 and state 3; and (ii) hypoxic conditions. In both cases a profound change in the pattern of the control coefficients was shown. 3. This model was thus found useful in investigating a variety of new conditions, the most interesting of which can then be experimentally studied.

Full Text

The Full Text of this article is available as a PDF (423.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chomyn A., Martinuzzi A., Yoneda M., Daga A., Hurko O., Johns D., Lai S. T., Nonaka I., Angelini C., Attardi G. MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4221–4225. doi: 10.1073/pnas.89.10.4221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DiMauro S., Bonilla E., Zeviani M., Nakagawa M., DeVivo D. C. Mitochondrial myopathies. Ann Neurol. 1985 Jun;17(6):521–538. doi: 10.1002/ana.410170602. [DOI] [PubMed] [Google Scholar]
  3. Funk C. I., Clark A., Jr, Connett R. J. A simple model of aerobic metabolism: applications to work transitions in muscle. Am J Physiol. 1990 Jun;258(6 Pt 1):C995–1005. doi: 10.1152/ajpcell.1990.258.6.C995. [DOI] [PubMed] [Google Scholar]
  4. Gellerich F. N., Bohnensack R., Kunz W. Control of mitochondrial respiration. The contribution of the adenine nucleotide translocator depends on the ATP- and ADP-consuming enzymes. Biochim Biophys Acta. 1983 Feb 17;722(2):381–391. doi: 10.1016/0005-2728(83)90086-5. [DOI] [PubMed] [Google Scholar]
  5. Gellerich F. N., Kunz W. S., Bohnensack R. Estimation of flux control coefficients from inhibitor titrations by non-linear regression. FEBS Lett. 1990 Nov 12;274(1-2):167–170. doi: 10.1016/0014-5793(90)81355-r. [DOI] [PubMed] [Google Scholar]
  6. Groen A. K., Wanders R. J., Westerhoff H. V., van der Meer R., Tager J. M. Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem. 1982 Mar 25;257(6):2754–2757. [PubMed] [Google Scholar]
  7. Hayashi J., Ohta S., Kikuchi A., Takemitsu M., Goto Y., Nonaka I. Introduction of disease-related mitochondrial DNA deletions into HeLa cells lacking mitochondrial DNA results in mitochondrial dysfunction. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10614–10618. doi: 10.1073/pnas.88.23.10614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hochachka P. W., Matheson G. O. Regulating ATP turnover rates over broad dynamic work ranges in skeletal muscles. J Appl Physiol (1985) 1992 Nov;73(5):1697–1703. doi: 10.1152/jappl.1992.73.5.1697. [DOI] [PubMed] [Google Scholar]
  9. Holt I. J., Miller D. H., Harding A. E. Genetic heterogeneity and mitochondrial DNA heteroplasmy in Leber's hereditary optic neuropathy. J Med Genet. 1989 Dec;26(12):739–743. doi: 10.1136/jmg.26.12.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Korzeniewski B., Froncisz W. An extended dynamic model of oxidative phosphorylation. Biochim Biophys Acta. 1991 Oct 18;1060(2):210–223. doi: 10.1016/s0005-2728(09)91009-x. [DOI] [PubMed] [Google Scholar]
  11. Korzeniewski B., Froncisz W. Theoretical studies on the control of the oxidative phosphorylation system. Biochim Biophys Acta. 1992 Aug 28;1102(1):67–75. doi: 10.1016/0005-2728(92)90066-b. [DOI] [PubMed] [Google Scholar]
  12. Korzeniewski B., Harper M. E., Brand M. D. Proportional activation coefficients during stimulation of oxidative phosphorylation by lactate and pyruvate or by vasopressin. Biochim Biophys Acta. 1995 May 10;1229(3):315–322. doi: 10.1016/0005-2728(95)00008-7. [DOI] [PubMed] [Google Scholar]
  13. Korzeniewski B. Regulation of cytochrome oxidase: theoretical studies. Biophys Chem. 1996 Mar 7;59(1-2):75–86. doi: 10.1016/0301-4622(95)00121-2. [DOI] [PubMed] [Google Scholar]
  14. Korzeniewski B. Simulation of oxidative phosphorylation in hepatocytes. Biophys Chem. 1996 Feb 8;58(3):215–224. doi: 10.1016/0301-4622(95)00077-1. [DOI] [PubMed] [Google Scholar]
  15. Korzeniewski B. Simulation of state 4 --> state 3 transition in isolated mitochondria. Biophys Chem. 1996 Jan;57(2-3):143–153. doi: 10.1016/0301-4622(95)00076-7. [DOI] [PubMed] [Google Scholar]
  16. Lestienne P. Mitochondrial and nuclear DNA complementation in the respiratory chain function and defects. Biochimie. 1989 Nov-Dec;71(11-12):1115–1123. doi: 10.1016/0300-9084(89)90015-1. [DOI] [PubMed] [Google Scholar]
  17. Letellier T., Heinrich R., Malgat M., Mazat J. P. The kinetic basis of threshold effects observed in mitochondrial diseases: a systemic approach. Biochem J. 1994 Aug 15;302(Pt 1):171–174. doi: 10.1042/bj3020171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Letellier T., Malgat M., Mazat J. P. Control of oxidative phosphorylation in rat muscle mitochondria: implications for mitochondrial myopathies. Biochim Biophys Acta. 1993 Feb 8;1141(1):58–64. doi: 10.1016/0005-2728(93)90189-m. [DOI] [PubMed] [Google Scholar]
  19. Meyer R. A., Foley J. M. Testing models of respiratory control in skeletal muscle. Med Sci Sports Exerc. 1994 Jan;26(1):52–57. [PubMed] [Google Scholar]
  20. Moraes C. T., Ciacci F., Bonilla E., Ionasescu V., Schon E. A., DiMauro S. A mitochondrial tRNA anticodon swap associated with a muscle disease. Nat Genet. 1993 Jul;4(3):284–288. doi: 10.1038/ng0793-284. [DOI] [PubMed] [Google Scholar]
  21. Sciacco M., Bonilla E., Schon E. A., DiMauro S., Moraes C. T. Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum Mol Genet. 1994 Jan;3(1):13–19. doi: 10.1093/hmg/3.1.13. [DOI] [PubMed] [Google Scholar]
  22. Shoffner J. M., Lott M. T., Lezza A. M., Seibel P., Ballinger S. W., Wallace D. C. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell. 1990 Jun 15;61(6):931–937. doi: 10.1016/0092-8674(90)90059-n. [DOI] [PubMed] [Google Scholar]
  23. Wallace D. C. Diseases of the mitochondrial DNA. Annu Rev Biochem. 1992;61:1175–1212. doi: 10.1146/annurev.bi.61.070192.005523. [DOI] [PubMed] [Google Scholar]
  24. Wallace D. C. Mitochondrial diseases: genotype versus phenotype. Trends Genet. 1993 Apr;9(4):128–133. doi: 10.1016/0168-9525(93)90207-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES