Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Oct 1;319(Pt 1):191–195. doi: 10.1042/bj3190191

High-yield production of functionally active human serum transferrin using a baculovirus expression system, and its structural characterization.

S A Ali 1, H C Joao 1, R Csonga 1, F Hammerschmid 1, A Steinkasserer 1
PMCID: PMC1217754  PMID: 8870668

Abstract

Recently, there has been much interest in expressing recombinant human serum transferrin (HST) and mutants thereof for structural and functional studies. We have developed a baculovirus expression system for the rapid and efficient production of large quantities of HST (> 20 mg/l). Like native HST, the recombinant protein can bind two ferric ions in the presence of bicarbonate, and is actively taken up by receptor-mediated endocytosis. Secondary structure calculations from CD measurements indicate a content of 42% alpha-helix and 28% beta-sheet. This is the first reported use of a non-mammalian expression system to produce functional HST, and will provide a practical tool to allow expression of a wide range of HST variants for mutagenesis studies.

Full Text

The Full Text of this article is available as a PDF (307.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aisen P., Listowsky I. Iron transport and storage proteins. Annu Rev Biochem. 1980;49:357–393. doi: 10.1146/annurev.bi.49.070180.002041. [DOI] [PubMed] [Google Scholar]
  2. Ali S. A., Hammerschmid F., Steinkasserer A. Resolution of all four transferrin isoforms produced during the iron binding process using multizone electrophoresis. Anal Biochem. 1996 Jun 15;238(1):93–94. doi: 10.1006/abio.1996.0256. [DOI] [PubMed] [Google Scholar]
  3. Ali S. A., Steinkasserer A. PCR-ligation-PCR mutagenesis: a protocol for creating gene fusions and mutations. Biotechniques. 1995 May;18(5):746–750. [PubMed] [Google Scholar]
  4. Anderson B. F., Baker H. M., Norris G. E., Rice D. W., Baker E. N. Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 A resolution. J Mol Biol. 1989 Oct 20;209(4):711–734. doi: 10.1016/0022-2836(89)90602-5. [DOI] [PubMed] [Google Scholar]
  5. Anderson B. F., Baker H. M., Norris G. E., Rice D. W., Baker E. N. Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 A resolution. J Mol Biol. 1989 Oct 20;209(4):711–734. doi: 10.1016/0022-2836(89)90602-5. [DOI] [PubMed] [Google Scholar]
  6. Anderson B. F., Baker H. M., Norris G. E., Rumball S. V., Baker E. N. Apolactoferrin structure demonstrates ligand-induced conformational change in transferrins. Nature. 1990 Apr 19;344(6268):784–787. doi: 10.1038/344784a0. [DOI] [PubMed] [Google Scholar]
  7. Bailey S., Evans R. W., Garratt R. C., Gorinsky B., Hasnain S., Horsburgh C., Jhoti H., Lindley P. F., Mydin A., Sarra R. Molecular structure of serum transferrin at 3.3-A resolution. Biochemistry. 1988 Jul 26;27(15):5804–5812. doi: 10.1021/bi00415a061. [DOI] [PubMed] [Google Scholar]
  8. Baker E. N., Lindley P. F. New perspectives on the structure and function of transferrins. J Inorg Biochem. 1992 Aug 15;47(3-4):147–160. doi: 10.1016/0162-0134(92)84061-q. [DOI] [PubMed] [Google Scholar]
  9. Bodkin M. J., Goodfellow J. M. Competing interactions contributing to alpha-helical stability in aqueous solution. Protein Sci. 1995 Apr;4(4):603–612. doi: 10.1002/pro.5560040402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Funk W. D., MacGillivray R. T., Mason A. B., Brown S. A., Woodworth R. C. Expression of the amino-terminal half-molecule of human serum transferrin in cultured cells and characterization of the recombinant protein. Biochemistry. 1990 Feb 13;29(6):1654–1660. doi: 10.1021/bi00458a043. [DOI] [PubMed] [Google Scholar]
  11. Harris D. C. Different metal-binding properties of the two sites of human transferrin. Biochemistry. 1977 Feb 8;16(3):560–564. doi: 10.1021/bi00622a033. [DOI] [PubMed] [Google Scholar]
  12. Huebers H. A., Finch C. A. The physiology of transferrin and transferrin receptors. Physiol Rev. 1987 Apr;67(2):520–582. doi: 10.1152/physrev.1987.67.2.520. [DOI] [PubMed] [Google Scholar]
  13. Huebers H., Bauer W., Huebers E., Csiba E., Finch C. The behavior of transferrin iron in the rat. Blood. 1981 Feb;57(2):218–228. [PubMed] [Google Scholar]
  14. Huebers H., Csiba E., Josephson B., Huebers E., Finch C. Interaction of human diferric transferrin with reticulocytes. Proc Natl Acad Sci U S A. 1981 Jan;78(1):621–625. doi: 10.1073/pnas.78.1.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ikeda R. A., Bowman B. H., Yang F., Lokey L. K. Production of human serum transferrin in Escherichia coli. Gene. 1992 Aug 15;117(2):265–269. doi: 10.1016/0378-1119(92)90737-a. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. MacGillivray R. T., Mendez E., Shewale J. G., Sinha S. K., Lineback-Zins J., Brew K. The primary structure of human serum transferrin. The structures of seven cyanogen bromide fragments and the assembly of the complete structure. J Biol Chem. 1983 Mar 25;258(6):3543–3553. [PubMed] [Google Scholar]
  18. MacGillivray R. T., Mendez E., Sinha S. K., Sutton M. R., Lineback-Zins J., Brew K. The complete amino acid sequence of human serum transferrin. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2504–2508. doi: 10.1073/pnas.79.8.2504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mason A. B., Funk W. D., MacGillivray R. T., Woodworth R. C. Efficient production and isolation of recombinant amino-terminal half-molecule of human serum transferrin from baby hamster kidney cells. Protein Expr Purif. 1991 Apr-Jun;2(2-3):214–220. doi: 10.1016/1046-5928(91)90074-s. [DOI] [PubMed] [Google Scholar]
  20. Mason A. B., Miller M. K., Funk W. D., Banfield D. K., Savage K. J., Oliver R. W., Green B. N., MacGillivray R. T., Woodworth R. C. Expression of glycosylated and nonglycosylated human transferrin in mammalian cells. Characterization of the recombinant proteins with comparison to three commercially available transferrins. Biochemistry. 1993 May 25;32(20):5472–5479. doi: 10.1021/bi00071a025. [DOI] [PubMed] [Google Scholar]
  21. Mazurier J., Aubert J. P., Loucheux-Lefevre M. H. Comparative circular dichroism studies of iron-free and iron-saturated forms of human serotransferrin and lactortransferrin. FEBS Lett. 1976 Jul 15;66(2):238–242. doi: 10.1016/0014-5793(76)80512-1. [DOI] [PubMed] [Google Scholar]
  22. Sreerama N., Woody R. W. A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem. 1993 Feb 15;209(1):32–44. doi: 10.1006/abio.1993.1079. [DOI] [PubMed] [Google Scholar]
  23. Steinlein L. M., Graf T. N., Ikeda R. A. Production and purification of N-terminal half-transferrin in Pichia pastoris. Protein Expr Purif. 1995 Oct;6(5):619–624. doi: 10.1006/prep.1995.1081. [DOI] [PubMed] [Google Scholar]
  24. Steinlein L. M., Ikeda R. A. Production of N-terminal and C-terminal human serum transferrin in Escherichia coli. Enzyme Microb Technol. 1993 Mar;15(3):193–199. doi: 10.1016/0141-0229(93)90137-q. [DOI] [PubMed] [Google Scholar]
  25. Vieira A. V., Schneider W. J. One-step chromatographic method for the purification of avian serotransferrin. Protein Expr Purif. 1993 Apr;4(2):110–113. doi: 10.1006/prep.1993.1016. [DOI] [PubMed] [Google Scholar]
  26. Wang Y., Chen J., Luo Y., Funk W. D., Mason A. B., Woodworth R. C., MacGillivray R. T., Brayer G. D. Preliminary crystallographic analyses of the N-terminal lobe of recombinant human serum transferrin. J Mol Biol. 1992 Sep 20;227(2):575–576. doi: 10.1016/0022-2836(92)90910-c. [DOI] [PubMed] [Google Scholar]
  27. de Smit M. H., Hoefkens P., de Jong G., van Duin J., van Knippenberg P. H., van Eijk H. G. Optimized bacterial production of nonglycosylated human transferrin and its half-molecules. Int J Biochem Cell Biol. 1995 Aug;27(8):839–850. doi: 10.1016/1357-2725(95)00040-v. [DOI] [PubMed] [Google Scholar]
  28. van Eijk H. G., de Jong G. The physiology of iron, transferrin, and ferritin. Biol Trace Elem Res. 1992 Oct;35(1):13–24. doi: 10.1007/BF02786234. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES