Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Oct 1;319(Pt 1):197–201. doi: 10.1042/bj3190197

Molecular cloning and expression in COS-1 cells of pig kidney aminopeptidase P.

R J Hyde 1, N M Hooper 1, A J Turner 1
PMCID: PMC1217755  PMID: 8870669

Abstract

Aminopeptidase P (AP-P; X-Pro aminopeptidase; EC 3.4.11.9), a key enzyme in the metabolism of the vasodilator bradykinin, has been cloned from a pig kidney cortex cDNA library following the use of the PCR to identify sub-libraries enriched in AP-P clones. The complete primary sequence of the enzyme has been deduced from a full-length cDNA clone. This predicts a protein of 673 amino acids with a cleavable N-terminal signal sequence and six potential N-linked glycosylation sites. A stretch of mainly hydrophobic amino acids at the C-terminus is predicted to co-ordinate the attachment of a glycosyl-phosphatidylinositol (GPI) membrane anchor. Although AP-P is a zinc metallopeptidase, the predicted primary sequence does not contain any recognizable zinc-binding motif. Transient expression of AP-P cDNA in COS-1 cells resulted in enzymic activity characteristic of AP-P, namely apstatin- and EDTA-sensitive hydrolysis of bradykinin and Gly-Pro-Hyp. The expressed protein was recognized as a polypeptide of M(r)91,000 under reducing conditions, following immunoblotting of COS-1 membranes with a polyclonal antibody raised against purified pig kidney AP-P. The presence of a GPI anchor on expressed AP-P was established by demonstrating release of the enzyme from a membrane fraction following treatment with bacterial phosphatidylinositol-specific phospholipase C and its corresponding conversion from an amphipathic to a hydrophilic form, as assessed by phase separation in Triton X-114. Sequence comparisons confirm that AP-P is a member of the proline peptidase family of hydrolytic enzymes and is unrelated in sequence to other brush-border membrane peptidases.

Full Text

The Full Text of this article is available as a PDF (474.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bazan J. F., Weaver L. H., Roderick S. L., Huber R., Matthews B. W. Sequence and structure comparison suggest that methionine aminopeptidase, prolidase, aminopeptidase P, and creatinase share a common fold. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2473–2477. doi: 10.1073/pnas.91.7.2473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Butler M. J., Bergeron A., Soostmeyer G., Zimny T., Malek L. T. Cloning and characterisation of an aminopeptidase P-encoding gene from Streptomyces lividans. Gene. 1993 Jan 15;123(1):115–119. doi: 10.1016/0378-1119(93)90549-i. [DOI] [PubMed] [Google Scholar]
  3. Dehm P., Nordwig A. The cleavage of prolyl peptides by kidney peptidases. Partial purification of an "X-prolyl-aminopeptidase" from swine kidney microsomes. Eur J Biochem. 1970 Dec;17(2):364–371. doi: 10.1111/j.1432-1033.1970.tb01174.x. [DOI] [PubMed] [Google Scholar]
  4. Denslow N. D., Ryan J. W., Nguyen H. P. Guinea pig membrane-bound aminopeptidase P is a member of the proline peptidase family. Biochem Biophys Res Commun. 1994 Dec 30;205(3):1790–1795. doi: 10.1006/bbrc.1994.2877. [DOI] [PubMed] [Google Scholar]
  5. Harbeck H. T., Mentlein R. Aminopeptidase P from rat brain. Purification and action on bioactive peptides. Eur J Biochem. 1991 Jun 1;198(2):451–458. doi: 10.1111/j.1432-1033.1991.tb16035.x. [DOI] [PubMed] [Google Scholar]
  6. Hooper N. M. Families of zinc metalloproteases. FEBS Lett. 1994 Oct 31;354(1):1–6. doi: 10.1016/0014-5793(94)01079-x. [DOI] [PubMed] [Google Scholar]
  7. Hooper N. M., Hryszko J., Oppong S. Y., Turner A. J. Inhibition by converting enzyme inhibitors of pig kidney aminopeptidase P. Hypertension. 1992 Mar;19(3):281–285. doi: 10.1161/01.hyp.19.3.281. [DOI] [PubMed] [Google Scholar]
  8. Hooper N. M., Hryszko J., Turner A. J. Purification and characterization of pig kidney aminopeptidase P. A glycosyl-phosphatidylinositol-anchored ectoenzyme. Biochem J. 1990 Apr 15;267(2):509–515. doi: 10.1042/bj2670509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hooper N. M., Keen J. N., Turner A. J. Characterization of the glycosyl-phosphatidylinositol-anchored human renal dipeptidase reveals that it is more extensively glycosylated than the pig enzyme. Biochem J. 1990 Jan 15;265(2):429–433. doi: 10.1042/bj2650429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hooper N. M., Turner A. J. Ectoenzymes of the kidney microvillar membrane. Aminopeptidase P is anchored by a glycosyl-phosphatidylinositol moiety. FEBS Lett. 1988 Mar 14;229(2):340–344. doi: 10.1016/0014-5793(88)81152-9. [DOI] [PubMed] [Google Scholar]
  11. Kenny A. J., Booth A. G., Macnair R. D. Peptidases of the kidney microvillus membrane. Acta Biol Med Ger. 1977;36(11-12):1575–1585. [PubMed] [Google Scholar]
  12. Keynan S., Hooper N. M., Turner A. J. Directed mutagenesis of pig renal membrane dipeptidase. His219 is critical but the DHXXH motif is not essential for zinc binding or catalytic activity. FEBS Lett. 1994 Jul 25;349(1):50–54. doi: 10.1016/0014-5793(94)00637-7. [DOI] [PubMed] [Google Scholar]
  13. Lasch J., Koelsch R., Ladhoff A. M., Hartrodt B. Is the proline-specific aminopeptidase P of the intestinal brush border an integral membrane enzyme? Biomed Biochim Acta. 1986;45(7):833–843. [PubMed] [Google Scholar]
  14. Lim J., Turner A. J. Chemical modification of porcine kidney aminopeptidase P indicates the involvement of two critical histidine residues. FEBS Lett. 1996 Mar 4;381(3):188–190. doi: 10.1016/0014-5793(96)00124-x. [DOI] [PubMed] [Google Scholar]
  15. Lloyd G. S., Habgood N. T., Hooper N. M., Turner A. J. Aminopeptidase P: immunoaffinity purification and molecular characterisation. Biochem Soc Trans. 1993 Aug;21(3):236S–236S. doi: 10.1042/bst021236s. [DOI] [PubMed] [Google Scholar]
  16. Lloyd G. S., Hryszko J., Hooper N. M., Turner A. J. Inhibition and metal ion activation of pig kidney aminopeptidase P. Dependence on nature of substrate. Biochem Pharmacol. 1996 Jul 26;52(2):229–236. doi: 10.1016/0006-2952(96)00180-3. [DOI] [PubMed] [Google Scholar]
  17. Logemann J., Schell J., Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal Biochem. 1987 May 15;163(1):16–20. doi: 10.1016/0003-2697(87)90086-8. [DOI] [PubMed] [Google Scholar]
  18. Medeiros M. D., Turner A. J. Processing and metabolism of peptide-YY: pivotal roles of dipeptidylpeptidase-IV, aminopeptidase-P, and endopeptidase-24.11. Endocrinology. 1994 May;134(5):2088–2094. doi: 10.1210/endo.134.5.7908871. [DOI] [PubMed] [Google Scholar]
  19. Needleman S. B., Wunsch C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970 Mar;48(3):443–453. doi: 10.1016/0022-2836(70)90057-4. [DOI] [PubMed] [Google Scholar]
  20. Orawski A. T., Simmons W. H. Purification and properties of membrane-bound aminopeptidase P from rat lung. Biochemistry. 1995 Sep 5;34(35):11227–11236. doi: 10.1021/bi00035a032. [DOI] [PubMed] [Google Scholar]
  21. Orawski A. T., Susz J. P., Simmons W. H. Aminopeptidase P from bovine lung: solubilization, properties, and potential role in bradykinin degradation. Mol Cell Biochem. 1987 Jun;75(2):123–132. doi: 10.1007/BF00229900. [DOI] [PubMed] [Google Scholar]
  22. Prechel M. M., Orawski A. T., Maggiora L. L., Simmons W. H. Effect of a new aminopeptidase P inhibitor, apstatin, on bradykinin degradation in the rat lung. J Pharmacol Exp Ther. 1995 Dec;275(3):1136–1142. [PubMed] [Google Scholar]
  23. Relton J. M., Gee N. S., Matsas R., Turner A. J., Kenny A. J. Purification of endopeptidase-24.11 ('enkephalinase') from pig brain by immunoadsorbent chromatography. Biochem J. 1983 Dec 1;215(3):519–523. doi: 10.1042/bj2150519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ryan J. W., Berryer P., Chung A. Y., Sheffy D. H. Characterization of rat pulmonary vascular aminopeptidase P in vivo: role in the inactivation of bradykinin. J Pharmacol Exp Ther. 1994 Jun;269(3):941–947. [PubMed] [Google Scholar]
  25. Ryan J. W., Chung A. Y., Berryer P., Sheffy D. H., Jr A radioassay for aminoacylproline hydrolase (aminopeptidase P) activity. Biochim Biophys Acta. 1992 Feb 26;1119(2):133–139. doi: 10.1016/0167-4838(92)90383-o. [DOI] [PubMed] [Google Scholar]
  26. Simmons W. H., Orawski A. T. Membrane-bound aminopeptidase P from bovine lung. Its purification, properties, and degradation of bradykinin. J Biol Chem. 1992 Mar 5;267(7):4897–4903. [PubMed] [Google Scholar]
  27. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  28. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Udenfriend S., Kodukula K. Prediction of omega site in nascent precursor of glycosylphosphatidylinositol protein. Methods Enzymol. 1995;250:571–582. doi: 10.1016/0076-6879(95)50098-7. [DOI] [PubMed] [Google Scholar]
  30. Vergas Romero C., Neudorfer I., Mann K., Schäfer W. Purification and amino acid sequence of aminopeptidase P from pig kidney. Eur J Biochem. 1995 Apr 1;229(1):262–269. [PubMed] [Google Scholar]
  31. Yoshimoto T., Murayama N., Honda T., Tone H., Tsuru D. Cloning and expression of aminopeptidase P gene from Escherichia coli HB101 and characterization of expressed enzyme. J Biochem. 1988 Jul;104(1):93–97. doi: 10.1093/oxfordjournals.jbchem.a122430. [DOI] [PubMed] [Google Scholar]
  32. Yoshimoto T., Orawski A. T., Simmons W. H. Substrate specificity of aminopeptidase P from Escherichia coli: comparison with membrane-bound forms from rat and bovine lung. Arch Biochem Biophys. 1994 May 15;311(1):28–34. doi: 10.1006/abbi.1994.1204. [DOI] [PubMed] [Google Scholar]
  33. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES