Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Oct 1;319(Pt 1):217–227. doi: 10.1042/bj3190217

Time-course studies by synchrotron X-ray solution scattering of the structure of human low-density lipoprotein during Cu(2+)-induced oxidation in relation to changes in lipid composition.

D F Meyer 1, A S Nealis 1, C H Macphee 1, P H Groot 1, K E Suckling 1, K R Bruckdorfer 1, S J Perkins 1
PMCID: PMC1217758  PMID: 8870672

Abstract

Low-density lipoproteins (LDLs) in plasma are constructed from a single molecule of apolipoprotein B-100 (apoB) (M(r) 512,000) in association with lipid [approximate M(r) (2-3) x 10(6)]. LDL oxidation is an important process in the development of atherosclerosis, and can be imitated by the addition of Cu2+ ions. Synchrotron X-ray scattering of LDL yields curves without radiation damage effects at concentrations close to physiological. The radius of gyration RG for preparations of LDL from different donors ranged between 12.1 and 16.0 nm, with a mean of 13.9 nm. At 4 degrees C, the distance distribution curve P(r) indicated a maximum dimension of 25-27 nm for LDL, a peak at 19.5 nm which corresponds to a surface shell of protein and phospholipid head groups in LDL, and submaxima between 1.7 and 13.5 nm, which correspond to an ordered lipid core in LDL. LDL from different donors exhibited distinct P(r) curves. For oxidation studies of LDL by X-rays, data are best obtained at 4 degrees C at a concentration of > or = 2 mg of LDL protein/ml together with controls based on non-oxidized LDL. LDL oxidation (2 mg of apoB/ml) was studied at 37 degrees C in the presence of 6.4, 25.6 and 51.2 mu of Cu2+/g of apoB. Large changes in P(r) were reproducibly observed in the inter-particle distance range between 13 and 16 nm shortly after initiation of oxidation. This corresponds to the phospholipid hydrocarbon in LDL, which has either increased in electron density during oxidation or become increasingly disordered. After 25 h, the structural changes subsequently spread to regions of the P(r) curves assigned to surface apoB and the central core of cholesteryl esters and triacyl-glycerols. Lipid analyses were carried out under the same solution conditions. The alpha-tocopherol and beta-carotene antioxidant contents of LDL were consumed within 1-2 h. Analyses of the formation of thiobarbituric acid-reactive substances and lipid hydroperoxides indicated that arachidonic acid was preferentially oxidized before the maximal formation of lipid hydroperoxides at 8-12 h after initiation of oxidation. High-performance TLC showed that phosphatidylcholine was continuously converted into lysophosphatidylcholine during oxidation, which is consistent with the early changes in the X-ray P(r) curves. The neutral core lipids became modified only after 12-15 h of oxidation. The combination of X-ray scattering structural analyses with biochemical analyses shows that the oxidation of LDL first affects the outer shell of surface phospholipid, then it spreads towards damage of apoB and the internal neutral lipid core of LDL.

Full Text

The Full Text of this article is available as a PDF (626.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson D., Deckelbaum R. J., Small D. M., Shipley G. G. Structure of human plasma low-density lipoproteins: molecular organization of the central core. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1042–1046. doi: 10.1073/pnas.74.3.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Barenghi L., Bradamante S., Giudici G. A., Vergani C. NMR analysis of low-density lipoprotein oxidatively-modified in vitro. Free Radic Res Commun. 1990;8(3):175–183. doi: 10.3109/10715769009087991. [DOI] [PubMed] [Google Scholar]
  4. Baumstark M. W., Kreutz W., Berg A., Frey I., Keul J. Structure of human low-density lipoprotein subfractions, determined by X-ray small-angle scattering. Biochim Biophys Acta. 1990 Jan 19;1037(1):48–57. doi: 10.1016/0167-4838(90)90100-t. [DOI] [PubMed] [Google Scholar]
  5. Bellamy M. F., Nealis A. S., Aitken J. W., Bruckdorfer K. R., Perkins S. J. Structural changes in oxidised low-density lipoproteins and of the effect of the anti-atherosclerotic drug probucol observed by synchrotron X-ray and neutron solution scattering. Eur J Biochem. 1989 Aug 1;183(2):321–329. doi: 10.1111/j.1432-1033.1989.tb14932.x. [DOI] [PubMed] [Google Scholar]
  6. Bowry V. W., Ingold K. U., Stocker R. Vitamin E in human low-density lipoprotein. When and how this antioxidant becomes a pro-oxidant. Biochem J. 1992 Dec 1;288(Pt 2):341–344. doi: 10.1042/bj2880341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chan L. Apolipoprotein B, the major protein component of triglyceride-rich and low density lipoproteins. J Biol Chem. 1992 Dec 25;267(36):25621–25624. [PubMed] [Google Scholar]
  8. Chapman M. J., Laplaud P. M., Luc G., Forgez P., Bruckert E., Goulinet S., Lagrange D. Further resolution of the low density lipoprotein spectrum in normal human plasma: physicochemical characteristics of discrete subspecies separated by density gradient ultracentrifugation. J Lipid Res. 1988 Apr;29(4):442–458. [PubMed] [Google Scholar]
  9. Chatterton J. E., Phillips M. L., Curtiss L. K., Milne R. W., Marcel Y. L., Schumaker V. N. Mapping apolipoprotein B on the low density lipoprotein surface by immunoelectron microscopy. J Biol Chem. 1991 Mar 25;266(9):5955–5962. [PubMed] [Google Scholar]
  10. Chen G. C., Hardman D. A., Hamilton R. L., Mendel C. M., Schilling J. W., Zhu S., Lau K., Wong J. S., Kane J. P. Distribution of lipid-binding regions in human apolipoprotein B-100. Biochemistry. 1989 Mar 21;28(6):2477–2484. doi: 10.1021/bi00432a019. [DOI] [PubMed] [Google Scholar]
  11. Chen G. C., Zhu S., Hardman D. A., Schilling J. W., Lau K., Kane J. P. Structural domains of human apolipoprotein B-100. Differential accessibility to limited proteolysis of B-100 in low density and very low density lipoproteins. J Biol Chem. 1989 Aug 25;264(24):14369–14375. [PubMed] [Google Scholar]
  12. Esterbauer H., Dieber-Rotheneder M., Waeg G., Striegl G., Jürgens G. Biochemical, structural, and functional properties of oxidized low-density lipoprotein. Chem Res Toxicol. 1990 Mar-Apr;3(2):77–92. doi: 10.1021/tx00014a001. [DOI] [PubMed] [Google Scholar]
  13. Esterbauer H., Gebicki J., Puhl H., Jürgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med. 1992 Oct;13(4):341–390. doi: 10.1016/0891-5849(92)90181-f. [DOI] [PubMed] [Google Scholar]
  14. Esterbauer H., Jürgens G., Quehenberger O., Koller E. Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. J Lipid Res. 1987 May;28(5):495–509. [PubMed] [Google Scholar]
  15. Esterbauer H., Puhl H., Dieber-Rotheneder M., Waeg G., Rabl H. Effect of antioxidants on oxidative modification of LDL. Ann Med. 1991;23(5):573–581. doi: 10.3109/07853899109150520. [DOI] [PubMed] [Google Scholar]
  16. Esterbauer H., Striegl G., Puhl H., Rotheneder M. Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic Res Commun. 1989;6(1):67–75. doi: 10.3109/10715768909073429. [DOI] [PubMed] [Google Scholar]
  17. Gutteridge J. M., Quinlan G. J. Malondialdehyde formation from lipid peroxides in the thiobarbituric acid test: the role of lipid radicals, iron salts, and metal chelators. J Appl Biochem. 1983 Aug-Oct;5(4-5):293–299. [PubMed] [Google Scholar]
  18. Hoff H. F., Gaubatz J. W. Isolation, purification, and characterization of a lipoprotein containing Apo B from the human aorta. Atherosclerosis. 1982 Apr;42(2-3):273–297. doi: 10.1016/0021-9150(82)90157-5. [DOI] [PubMed] [Google Scholar]
  19. Jessup W., Rankin S. M., De Whalley C. V., Hoult J. R., Scott J., Leake D. S. Alpha-tocopherol consumption during low-density-lipoprotein oxidation. Biochem J. 1990 Jan 15;265(2):399–405. doi: 10.1042/bj2650399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kalyanaraman B., Antholine W. E., Parthasarathy S. Oxidation of low-density lipoprotein by Cu2+ and lipoxygenase: an electron spin resonance study. Biochim Biophys Acta. 1990 Sep 14;1035(3):286–292. doi: 10.1016/0304-4165(90)90090-j. [DOI] [PubMed] [Google Scholar]
  21. Laggner P., Degovics G., Müller K. W., Glatter O., Kratky O., Kostner G., Holasek A. Molecular packing and fluidity of lipids in human serum low density lipoproteins. Hoppe Seylers Z Physiol Chem. 1977 Jul;358(7):771–778. doi: 10.1515/bchm2.1977.358.2.771. [DOI] [PubMed] [Google Scholar]
  22. Laggner P., Kostner G. M., Rakusch U., Worcester D. Neutron small angle scattering on selectively deuterated human plasma low density lipoproteins. The location of polar phospholipid headgroups. J Biol Chem. 1981 Nov 25;256(22):11832–11839. [PubMed] [Google Scholar]
  23. Laggner P., Müller K. W. The structure of serum lipoproteins as analysed by X-ray small-angle scattering. Q Rev Biophys. 1978 Aug;11(3):371–425. doi: 10.1017/s0033583500002304. [DOI] [PubMed] [Google Scholar]
  24. Meyer D. F., Mayans M. O., Groot P. H., Suckling K. E., Bruckdorfer K. R., Perkins S. J. Time-course studies by neutron solution scattering and biochemical assays of the aggregation of human low-density lipoprotein during Cu(2+)-induced oxidation. Biochem J. 1995 Sep 1;310(Pt 2):417–426. doi: 10.1042/bj3100417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Meyer D. F., Nealis A. S., Bruckdorfer K. R., Perkins S. J. Characterization of the structure of polydisperse human low-density lipoprotein by neutron scattering. Biochem J. 1995 Sep 1;310(Pt 2):407–415. doi: 10.1042/bj3100407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Meyer D. F., Nealis A. S., Bruckdorfer K. R., Perkins S. J. Conformational changes in oxidized LDL using X-ray and neutron solution scattering techniques. Biochem Soc Trans. 1993 May;21(2):139S–139S. doi: 10.1042/bst021139s. [DOI] [PubMed] [Google Scholar]
  27. Müller K., Laggner P., Glatter O., Kostner G. The structure of human-plasma low-density lipoprotein B. An X-ray small-angle scattering study. Eur J Biochem. 1978 Jan 2;82(1):73–90. doi: 10.1111/j.1432-1033.1978.tb11998.x. [DOI] [PubMed] [Google Scholar]
  28. Noguchi N., Gotoh N., Niki E. Dynamics of the oxidation of low density lipoprotein induced by free radicals. Biochim Biophys Acta. 1993 Jul 1;1168(3):348–357. [PubMed] [Google Scholar]
  29. Perkins S. J. High-flux X-ray and neutron solution scattering. Methods Mol Biol. 1994;22:39–60. doi: 10.1385/0-89603-232-9:39. [DOI] [PubMed] [Google Scholar]
  30. Perkins S. J. Protein volumes and hydration effects. The calculations of partial specific volumes, neutron scattering matchpoints and 280-nm absorption coefficients for proteins and glycoproteins from amino acid sequences. Eur J Biochem. 1986 May 15;157(1):169–180. doi: 10.1111/j.1432-1033.1986.tb09653.x. [DOI] [PubMed] [Google Scholar]
  31. Rudel L. L., Parks J. S., Johnson F. L., Babiak J. Low density lipoproteins in atherosclerosis. J Lipid Res. 1986 May;27(5):465–474. [PubMed] [Google Scholar]
  32. Sato K., Niki E., Shimasaki H. Free radical-mediated chain oxidation of low density lipoprotein and its synergistic inhibition by vitamin E and vitamin C. Arch Biochem Biophys. 1990 Jun;279(2):402–405. doi: 10.1016/0003-9861(90)90508-v. [DOI] [PubMed] [Google Scholar]
  33. Sattler W., Kostner G. M., Waeg G., Esterbauer H. Oxidation of lipoprotein Lp(a). A comparison with low-density lipoproteins. Biochim Biophys Acta. 1991 Jan 4;1081(1):65–74. doi: 10.1016/0005-2760(91)90251-c. [DOI] [PubMed] [Google Scholar]
  34. Shen B. W., Scanu A. M., Kézdy F. J. Structure of human serum lipoproteins inferred from compositional analysis. Proc Natl Acad Sci U S A. 1977 Mar;74(3):837–841. doi: 10.1073/pnas.74.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Spring D. J., Chen-Liu L. W., Chatterton J. E., Elovson J., Schumaker V. N. Lipoprotein assembly. Apolipoprotein B size determines lipoprotein core circumference. J Biol Chem. 1992 Jul 25;267(21):14839–14845. [PubMed] [Google Scholar]
  36. Steinberg D., Witztum J. L. Lipoproteins and atherogenesis. Current concepts. JAMA. 1990 Dec 19;264(23):3047–3052. [PubMed] [Google Scholar]
  37. Steinbrecher U. P. Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem. 1987 Mar 15;262(8):3603–3608. [PubMed] [Google Scholar]
  38. Steinbrecher U. P., Parthasarathy S., Leake D. S., Witztum J. L., Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3883–3887. doi: 10.1073/pnas.81.12.3883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tew D. G., Southan C., Rice S. Q., Lawrence M. P., Li H., Boyd H. F., Moores K., Gloger I. S., Macphee C. H. Purification, properties, sequencing, and cloning of a lipoprotein-associated, serine-dependent phospholipase involved in the oxidative modification of low-density lipoproteins. Arterioscler Thromb Vasc Biol. 1996 Apr;16(4):591–599. doi: 10.1161/01.atv.16.4.591. [DOI] [PubMed] [Google Scholar]
  40. Thomas S. M., Jessup W., Gebicki J. M., Dean R. T. A continuous-flow automated assay for iodometric estimation of hydroperoxides. Anal Biochem. 1989 Feb 1;176(2):353–359. doi: 10.1016/0003-2697(89)90322-9. [DOI] [PubMed] [Google Scholar]
  41. Witztum J. L., Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991 Dec;88(6):1785–1792. doi: 10.1172/JCI115499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yang C. Y., Gu Z. W., Weng S. A., Kim T. W., Chen S. H., Pownall H. J., Sharp P. M., Liu S. W., Li W. H., Gotto A. M., Jr Structure of apolipoprotein B-100 of human low density lipoproteins. Arteriosclerosis. 1989 Jan-Feb;9(1):96–108. doi: 10.1161/01.atv.9.1.96. [DOI] [PubMed] [Google Scholar]
  43. Yang C. Y., Kim T. W., Weng S. A., Lee B. R., Yang M. L., Gotto A. M., Jr Isolation and characterization of sulfhydryl and disulfide peptides of human apolipoprotein B-100. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5523–5527. doi: 10.1073/pnas.87.14.5523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Ylä-Herttuala S., Jaakkola O., Ehnholm C., Tikkanen M. J., Solakivi T., Särkioja T., Nikkari T. Characterization of two lipoproteins containing apolipoproteins B and E from lesion-free human aortic intima. J Lipid Res. 1988 May;29(5):563–572. [PubMed] [Google Scholar]
  45. de Graaf J., Hak-Lemmers H. L., Hectors M. P., Demacker P. N., Hendriks J. C., Stalenhoef A. F. Enhanced susceptibility to in vitro oxidation of the dense low density lipoprotein subfraction in healthy subjects. Arterioscler Thromb. 1991 Mar-Apr;11(2):298–306. doi: 10.1161/01.atv.11.2.298. [DOI] [PubMed] [Google Scholar]
  46. el-Saadani M., Esterbauer H., el-Sayed M., Goher M., Nassar A. Y., Jürgens G. A spectrophotometric assay for lipid peroxides in serum lipoproteins using a commercially available reagent. J Lipid Res. 1989 Apr;30(4):627–630. [PubMed] [Google Scholar]
  47. van Hinsbergh V. W., Scheffer M., Havekes L., Kempen H. J. Role of endothelial cells and their products in the modification of low-density lipoproteins. Biochim Biophys Acta. 1986 Aug 14;878(1):49–64. doi: 10.1016/0005-2760(86)90343-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES