Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Oct 1;319(Pt 1):263–268. doi: 10.1042/bj3190263

Alterations in nutritional status regulate acetyl-CoA carboxylase expression in avian liver by a transcriptional mechanism.

F B Hillgartner 1, T Charron 1, K A Chesnut 1
PMCID: PMC1217763  PMID: 8870677

Abstract

Feeding previously starved chicks with a high-carbohydrate, low-fat diet stimulates a 9-fold increase in both the rate of synthesis of acetyl-CoA carboxylase (ACC) and the abundance of its mRNA in liver. To define the steps involved in mediating diet-induced changes in the abundance of ACC mRNA, transcriptional activity was measured with the nuclear run-on assay and multiple DNA probes specific to the ACC gene. ACC transcription was low in livers of starved chicks; feeding them with a high-carbohydrate, low-fat diet induced ACC transcription, increasing it 11-fold. An increase in transcription was detectable at 1 h, was maximal at 5 h and remained high for 26 h. Feeding previously starved chicks with a low-carbohydrate, high-fat diet stimulated a smaller increase (4-fold) in the abundance of ACC mRNA and the transcription of ACC than feeding with a high-carbohydrate, low-fat diet. The half-life of ACC mRNA in liver, as estimated from the kinetics of accumulation and decay of ACC mRNA during high-carbohydrate feeding and starvation, was not changed significantly by dietary manipulation. ACC mRNA was expressed at low levels in heart, pectoral muscle, kidney and brain. The abundance of ACC mRNA in these tissues was not affected by nutritional manipulation. These results demonstrate that nutritional control of the abundance of ACC mRNA in the chicken is liver-specific and is mediated primarily by changes in the rate of transcription of the ACC gene.

Full Text

The Full Text of this article is available as a PDF (384.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amasino R. M. Acceleration of nucleic acid hybridization rate by polyethylene glycol. Anal Biochem. 1986 Feb 1;152(2):304–307. doi: 10.1016/0003-2697(86)90413-6. [DOI] [PubMed] [Google Scholar]
  2. Back D. W., Goldman M. J., Fisch J. E., Ochs R. S., Goodridge A. G. The fatty acid synthase gene in avian liver. Two mRNAs are expressed and regulated in parallel by feeding, primarily at the level of transcription. J Biol Chem. 1986 Mar 25;261(9):4190–4197. [PubMed] [Google Scholar]
  3. Berlin C. M., Schimke R. T. Influence of turnover rates on the responses of enzymes to cortisone. Mol Pharmacol. 1965 Sep;1(2):149–156. [PubMed] [Google Scholar]
  4. Bianchi A., Evans J. L., Iverson A. J., Nordlund A. C., Watts T. D., Witters L. A. Identification of an isozymic form of acetyl-CoA carboxylase. J Biol Chem. 1990 Jan 25;265(3):1502–1509. [PubMed] [Google Scholar]
  5. Brady P. S., Ramsay R. R., Brady L. J. Regulation of the long-chain carnitine acyltransferases. FASEB J. 1993 Aug;7(11):1039–1044. doi: 10.1096/fasebj.7.11.8370473. [DOI] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Clarke S. D., Romsos D. R., Leveille G. A. Influence of dietary fatty acids on liver and adipose tissue lipogenesis and on liver metabolites in meal-fed rats. J Nutr. 1977 Jul;107(7):1277–1287. doi: 10.1093/jn/107.7.1277. [DOI] [PubMed] [Google Scholar]
  8. Cohen P., Hardie D. G. The actions of cyclic AMP on biosynthetic processes are mediated indirectly by cyclic AMP-dependent protein kinase. Biochim Biophys Acta. 1991 Sep 24;1094(3):292–299. doi: 10.1016/0167-4889(91)90089-g. [DOI] [PubMed] [Google Scholar]
  9. El Khadir-Mounier C., Le Fur N., Powell R. S., Diot C., Langlois P., Mallard J., Douaire M. Cloning and characterization of the 5' end and promoter region of the chicken acetyl-CoA carboxylase gene. Biochem J. 1996 Mar 1;314(Pt 2):613–619. doi: 10.1042/bj3140613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Evans J. L., Witters L. A. Quantitation by immunoblotting of the in vivo induction and subcellular distribution of hepatic acetyl-CoA carboxylase. Arch Biochem Biophys. 1988 Jul;264(1):103–113. doi: 10.1016/0003-9861(88)90575-9. [DOI] [PubMed] [Google Scholar]
  11. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  12. Fischer P. W., Goodridge A. G. Coordinate regulation of acetyl coenzyme A carboxylase and fatty acid synthetase in liver cells of the developing chick in vivo and in culture. Arch Biochem Biophys. 1978 Sep;190(1):332–344. doi: 10.1016/0003-9861(78)90283-7. [DOI] [PubMed] [Google Scholar]
  13. Foufelle F., Perdereau D., Gouhot B., Ferre P., Girard J. Effect of diets rich in medium-chain and long-chain triglycerides on lipogenic-enzyme gene expression in liver and adipose tissue of the weaned rat. Eur J Biochem. 1992 Sep 1;208(2):381–387. doi: 10.1111/j.1432-1033.1992.tb17198.x. [DOI] [PubMed] [Google Scholar]
  14. Goldman M. J., Back D. W., Goodridge A. G. Nutritional regulation of the synthesis and degradation of malic enzyme messenger RNA in duck liver. J Biol Chem. 1985 Apr 10;260(7):4404–4408. [PubMed] [Google Scholar]
  15. Hillard B. L., Lundin P., Clarke S. D. Essentiality of dietary carbohydrate for maintenance of liver lipogenesis in the chick. J Nutr. 1980 Aug;110(8):1533–1542. doi: 10.1093/jn/110.8.1533. [DOI] [PubMed] [Google Scholar]
  16. Hillgartner F. B., Chen W., Goodridge A. G. Overexpression of the alpha-thyroid hormone receptor in avian cell lines. Effects on expression of the malic enzyme gene are selective and cell-specific. J Biol Chem. 1992 Jun 15;267(17):12299–12306. [PubMed] [Google Scholar]
  17. Hillgartner F. B., Salati L. M., Goodridge A. G. Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiol Rev. 1995 Jan;75(1):47–76. doi: 10.1152/physrev.1995.75.1.47. [DOI] [PubMed] [Google Scholar]
  18. Iverson A. J., Bianchi A., Nordlund A. C., Witters L. A. Immunological analysis of acetyl-CoA carboxylase mass, tissue distribution and subunit composition. Biochem J. 1990 Jul 15;269(2):365–371. doi: 10.1042/bj2690365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Katsurada A., Iritani N., Fukuda H., Matsumura Y., Nishimoto N., Noguchi T., Tanaka T. Effects of nutrients and hormones on transcriptional and post-transcriptional regulation of acetyl-CoA carboxylase in rat liver. Eur J Biochem. 1990 Jun 20;190(2):435–441. doi: 10.1111/j.1432-1033.1990.tb15593.x. [DOI] [PubMed] [Google Scholar]
  20. Kim K. H., López-Casillas F., Bai D. H., Luo X., Pape M. E. Role of reversible phosphorylation of acetyl-CoA carboxylase in long-chain fatty acid synthesis. FASEB J. 1989 Sep;3(11):2250–2256. doi: 10.1096/fasebj.3.11.2570725. [DOI] [PubMed] [Google Scholar]
  21. Lakshmanan M. R., Nepokroeff C. M., Kim M., Porter J. W. Adaptive synthesis of fatty acid synthetase and acetyl-CoA carboxylase by isolated rat liver cells. Arch Biochem Biophys. 1975 Aug;169(2):737–745. doi: 10.1016/0003-9861(75)90219-2. [DOI] [PubMed] [Google Scholar]
  22. Linial M., Gunderson N., Groudine M. Enhanced transcription of c-myc in bursal lymphoma cells requires continuous protein synthesis. Science. 1985 Dec 6;230(4730):1126–1132. doi: 10.1126/science.2999973. [DOI] [PubMed] [Google Scholar]
  23. Liou G. I., Donaldson W. E. Relative activities of acetyl-CoA carboxylase and fatty acid synthetase in chick liver: effects of dietary fat. Can J Biochem. 1973 Jul;51(7):1029–1033. doi: 10.1139/o73-134. [DOI] [PubMed] [Google Scholar]
  24. Luo X. C., Park K., Lopez-Casillas F., Kim K. H. Structural features of the acetyl-CoA carboxylase gene: mechanisms for the generation of mRNAs with 5' end heterogeneity. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4042–4046. doi: 10.1073/pnas.86.11.4042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. López-Casillas F., Kim K. H. Heterogeneity at the 5' end of rat acetyl-coenzyme A carboxylase mRNA. Lipogenic conditions enhance synthesis of a unique mRNA in liver. J Biol Chem. 1989 May 5;264(13):7176–7184. [PubMed] [Google Scholar]
  26. López-Casillas F., Ponce-Castañeda M. V., Kim K. H. Acetyl-coenzyme A carboxylase mRNA metabolism in the rat liver. Metabolism. 1992 Feb;41(2):201–207. doi: 10.1016/0026-0495(92)90154-3. [DOI] [PubMed] [Google Scholar]
  27. López-Casillas F., Ponce-Castañeda M. V., Kim K. H. In vivo regulation of the activity of the two promoters of the rat acetyl coenzyme-A carboxylase gene. Endocrinology. 1991 Aug;129(2):1049–1058. doi: 10.1210/endo-129-2-1049. [DOI] [PubMed] [Google Scholar]
  28. Ma X. J., Salati L. M., Ash S. E., Mitchell D. A., Klautky S. A., Fantozzi D. A., Goodridge A. G. Nutritional regulation and tissue-specific expression of the malic enzyme gene in the chicken. Transcriptional control and chromatin structure. J Biol Chem. 1990 Oct 25;265(30):18435–18441. [PubMed] [Google Scholar]
  29. Majerus P. W., Kilburn E. Acetyl coenzyme A carboxylase. The roles of synthesis and degradation in regulation of enzyme levels in rat liver. J Biol Chem. 1969 Nov 25;244(22):6254–6262. [PubMed] [Google Scholar]
  30. Nakanishi S., Numa S. Purification of rat liver acetyl coenzyme A carboxylase and immunochemical studies on its synthesis and degradation. Eur J Biochem. 1970 Sep;16(1):161–173. doi: 10.1111/j.1432-1033.1970.tb01068.x. [DOI] [PubMed] [Google Scholar]
  31. Pape M. E., Lopez-Casillas F., Kim K. H. Physiological regulation of acetyl-CoA carboxylase gene expression: effects of diet, diabetes, and lactation on acetyl-CoA carboxylase mRNA. Arch Biochem Biophys. 1988 Nov 15;267(1):104–109. doi: 10.1016/0003-9861(88)90013-6. [DOI] [PubMed] [Google Scholar]
  32. Romsos D. R., Ruiz S. M., Leveille G. A. Influence of dietary fat source on hepatic lipogenesis in the fasted-refed chick (Gallus domesticus). Comp Biochem Physiol B. 1976;53(1):19–22. doi: 10.1016/0305-0491(76)90089-4. [DOI] [PubMed] [Google Scholar]
  33. Salati L. M., Ma X. J., McCormick C. C., Stapleton S. R., Goodridge A. G. Triiodothyronine stimulates and cyclic AMP inhibits transcription of the gene for malic enzyme in chick embryo hepatocytes in culture. J Biol Chem. 1991 Feb 25;266(6):4010–4016. [PubMed] [Google Scholar]
  34. Schibler U., Hagenbüchle O., Wellauer P. K., Pittet A. C. Two promoters of different strengths control the transcription of the mouse alpha-amylase gene Amy-1a in the parotid gland and the liver. Cell. 1983 Jun;33(2):501–508. doi: 10.1016/0092-8674(83)90431-2. [DOI] [PubMed] [Google Scholar]
  35. Spencer E. B., Bianchi A., Widmer J., Witters L. A. Brain acetyl-CoA carboxylase: isozymic identification and studies of its regulation during development and altered nutrition. Biochem Biophys Res Commun. 1993 Apr 30;192(2):820–825. doi: 10.1006/bbrc.1993.1488. [DOI] [PubMed] [Google Scholar]
  36. Takai T., Saito Y., Yamamoto K., Tanabe T. Developmental changes of the content of acetyl-CoA carboxylase mRNA in chicken liver. Arch Biochem Biophys. 1988 Nov 1;266(2):313–318. doi: 10.1016/0003-9861(88)90263-9. [DOI] [PubMed] [Google Scholar]
  37. Takai T., Yokoyama C., Wada K., Tanabe T. Primary structure of chicken liver acetyl-CoA carboxylase deduced from cDNA sequence. J Biol Chem. 1988 Feb 25;263(6):2651–2657. [PubMed] [Google Scholar]
  38. Thampy K. G. Formation of malonyl coenzyme A in rat heart. Identification and purification of an isozyme of A carboxylase from rat heart. J Biol Chem. 1989 Oct 25;264(30):17631–17634. [PubMed] [Google Scholar]
  39. Thampy K. G., Koshy A. G. Purification, characterization, and ontogeny of acetyl-CoA carboxylase isozyme of chick embryo brain. J Lipid Res. 1991 Oct;32(10):1667–1673. [PubMed] [Google Scholar]
  40. Toussant M. J., Wilson M. D., Clarke S. D. Coordinate suppression of liver acetyl-CoA carboxylase and fatty acid synthetase by polyunsaturated fat. J Nutr. 1981 Jan;111(1):146–153. doi: 10.1093/jn/111.1.146. [DOI] [PubMed] [Google Scholar]
  41. Winz R., Hess D., Aebersold R., Brownsey R. W. Unique structural features and differential phosphorylation of the 280-kDa component (isozyme) of rat liver acetyl-CoA carboxylase. J Biol Chem. 1994 May 20;269(20):14438–14445. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES